Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Fletcher C.A. — Computational Techniques for Fluid Dynamics. Vol. 1
Fletcher C.A. — Computational Techniques for Fluid Dynamics. Vol. 1



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Computational Techniques for Fluid Dynamics. Vol. 1

Àâòîð: Fletcher C.A.

Àííîòàöèÿ:

This well-known 2-volume textbook provides senior undergraduate and postgraduate engineers, scientists and applied mathematicians with the specific techniques, and the framework to develop skills in using the techniques in the various branches of computational fluid dynamics.
Volume 1 systematically develops fundamental computational techniques, partial differential equations including convergence, stability and consistency and equation solution methods. A unified treatment of finite difference, finite element, finite volume and spectral methods, as alternative means of discretion, is emphasized. For the second edition the author also compiled a separately available manual of solutions to the many exercises to be found in the main text.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: Second edition

Ãîä èçäàíèÿ: 1991

Êîëè÷åñòâî ñòðàíèö: 401

Äîáàâëåíà â êàòàëîã: 23.10.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
FTCS scheme and linear convection equation      277 278
FTCS scheme and Richardson extrapolation      91
FTCS scheme, and 2D diffusion equation      250
FTCS scheme, fourth-order accuracy      77
FTCS scheme, stability of      81—82 85—86
Fully implicit scheme for diffusion equation      227—228
Galerkin (weighted residual) method      101—104 377
Galerkin finite element method      126—144 355—359
Galerkin finite element method, boundary implementation      269
Galerkin spectral method      147 150
Gauss elimination      152 180—183
Gauss elimination, narrowly banded      184—186
Gauss elimination, sparse      182—183
Gauss quadrature      145
Gauss — Seidel iterative method      193—196
General three-level scheme for 1D diffusion equation      229 230
General three-level scheme for 2D diffusion equation      255
Generalised coordinates      22 43 107 156
Global constraint and elliptic partial differential equation      38
Global method vs local method      14 15 145 156
Green's function method      41—42
Green's theorem      38
Grid generation      7 8
Grid growth ratio      349 377
Grid nonuniformity and solution accuracy      348—352
Grid nonuniformity and solution accuracy and truncation error      349 350
Grid refinement and accuracy      58—61 75 89—92 119 121 134 143 226 235—240 266
Grid refinement and iterative convergence      192 195 198
Group finite element method      355—360
Group finite element method and 1D Burgers' equation      340
Group finite element method, and 2D transport equation      319—320
Group finite element method, comparison with conventional finite element method      358—360
Group finite element method, computational efficiency      356
Group finite element method, one-dimensional formulation      356
Group finite element method, operation count for      358—359
Group finite element method, two-dimensional formulation      357—358
Heat conduction equation      34 48 64—66 135 216—217
Higher order difference formulae      58—60 63—64
Higher order explicit schemes for diffusion equation      221 226
Higher order implicit schemes for diffusion equation      230 231
Hopscotch method      251
Hyperbolic partial differential equation      17—19 21—23 25—27 30—38 43—45
Hyperbolic partial differential equation1 and discontinuity propagation      89
Hyperbolic partial differential equation1, boundary conditions for      32—34
Hyperbolic partial differential equation1, characteristics for      30—31
Hyperbolic partial differential equation1, domains of dependence and influence      31
Hyperbolic partial differential equation1, initial conditions for      31
Ill-conditioned system of equations      186
Implicit schemes for diffusion equation      228—236
Implicit schemes for the 1D Burgers' equation      337—339
Implicit schemes for the 1D transport equation      304—306
Implicitness parameter      82 87 136
Initial conditions      19 20 241
Instability, nonlinear      154
Instability, nonlinear, physical      88
Integral form, governing equation      106
Interpolation      116—126
Interpolation, bilinear      121—122 125 144
Interpolation, biquadratic      123—125
Interpolation, error      119 121 125
Interpolation, function      118 120 121—123 377
Interpolation, higher-order      121 126 134
Interpolation, linear      117—119 134
Interpolation, multigrid      204—207
Interpolation, quadratic      119—121 134
Inviscid Burgers' equation      332 333 335 337
Inviscid flow      7—8 13 16 18—20 30 32—33 44—45 59 116 353—355
Isoparametric formulation      143—145
Iterative methods for algebraic systems of equations      192—207
Iterative methods for algebraic systems of equations, convergence acceleration      200—207
Iterative methods for algebraic systems of equations, convergence acceleration via iterative sequence      197 214 215
Iterative methods for algebraic systems of equations, convergence rate and grid refinement      198
Iterative methods for algebraic systems of equations, convergence rate and strong ellipticity      198
Iterative methods for algebraic systems of equations, Gauss — Seidel method      193
Iterative methods for algebraic systems of equations, general structure      192
Iterative methods for algebraic systems of equations, implicit algorithms      196—200
Iterative methods for algebraic systems of equations, Jacobi method      193
Iterative methods for algebraic systems of equations, point vs line methods      195
Iterative methods for algebraic systems of equations, SLOR method      197
Iterative methods for algebraic systems of equations, SOR method      193
JACBU: evaluates Jacobian of 2D Burgers' equations      177 211
JACOB: evaluates Jacobian required by Newton's method      169 170
Jacobi iterative method      193—197
Jacobi iterative method and pseudotransient method      208
Jacobian, Newton      165 169 170 172 211 212
Jacobian, transformation      23 145
Korteweg de Vries equation      44
Lagrange interpolation function      120 123 124 126
Laplace's equation      13 107—116
Lax equivalence theorem      74
Lax — Wendroff scheme and 1D transport equation      301 303 307 312
Lax — Wendroff scheme and linear convection equation      281—283 291—292
Lax — Wendroff scheme and systems of equations      353—355
Lax — Wendroff scheme, two-stage      335 336 346 353—354
Leapfrog scheme for linear convection equation      281 282
Least-squares (weighted residual) method      100 103
Leith's scheme      282
Locally one-dimensional method      272; see also “Method of fractional steps”
LU-factorisation and Gauss elimination      169
LU-factorisation, incomplete      207
MacCormack scheme, explicit      354
Mach number      18
MACSYMA, symbolic manipulation      291
Mass operator and bilinear interpolation      256
Mass operator and Galerkin weighted integral      378
Mass operator and linear interpolation and fourth-order accuracy      379
Mass operator and Pade differencing      379
Mass operator and three dimensional discretisation      379
Mass operator, boundary evaluation      270—271
Mass operator, computational scheme      307 338 362 376—379
Mass operator, directional      136 138 139 377
Mass operator, generalised      231 260 283 305 317 325 338 362
Mass operator, generalised and dispersion      305 345
Matrix, banded      163
Matrix, dense      163
Matrix, diagonal dominance      192
Matrix, fill-in      182
Matrix, positive definite      179
Matrix, sparse      163 182
Matrix, spectral radius      192
Matrix, structure for finite difference scheme      163
Maximum principle for elliptic partial differential equations      37
Megaflop      4 6
Method of characteristics      38—40
Method of fractional steps      271—273
Method of lines and ordinary differential equations      241—246
Microcomputers and CFD      6
Minicomputers and CFD      6
Modified equation method      290—291
Modified equation method and 1D transport equation      305 306
Modified equation method, and 2D transport equation      324
Multigrid method      203—207 211
Multigrid method and prolongation (interpolation) operator      204
Multigrid method and restriction operator      204—205
Multigrid method and V-cycle      205
Multigrid method, correction storage (CS) for linear problems      206
Multigrid method, full (FMG)      207
Multigrid method, problems      207
Multistep-method, linear for ordinary differential equations      242
Navier — Stokes equations      19—20 28 35 37 43
Navier — Stokes equations, reduced form      1 8 28
Navier — Stokes equations, thin layer form      8
Neumann boundary conditions      20 36—38 236—241
Neumann boundary conditions and accuracy      133 238—240 268
Neumann boundary conditions and finite volume method      111
Neumann boundary conditions and spectral method      149
Neumann boundary conditions and splitting      266—271
Neumann boundary conditions and stability      83—85
Neumann boundary conditions, finite difference implementation      267—268
Neumann boundary conditions, finite element implementation      269—271
Neumann boundary conditions, numerical implementation      237—238
NEWTBU, inclusion of augmented Jacobian      210—211
NEWTBU: two dimensional Burgers' equation      171—179
Newton's method      163—166
NEWTON: flat plate collector analysis      166—170
Nondimensionalisation      12 148
Numerical dissipation and dispersion      287—293
Numerical dissipation and modified equation method      290—291
Numerical dissipation, dispersion and discretisation schemes      292
Numerical dissipation, dispersion and Fourier analysis      288—290
One-sided differencing      50 54
Operation count and block Thomas algorithm      189
Operation count and finite element method      358 359
Operation count, empirical determination      92—94
Optimal-rms solution and weighted residual method      103
Ordinary differential equations      241—246
Ordinary differential equations and absolute stability      244
Ordinary differential equations and linear multistep methods      242—243
Ordinary differential equations and Runge — Kutta schemes      243—245
Orthogonal collocation      95 100 156
Orthogonal function      146 147
ORTHOMIN algorithm      202
Panel method      182
Parabolic partial differential equation      17 18 21—23 25—26 34—38
Parabolic partial differential equation, boundary conditions for      36
Parallel processing      5 6 16
Partial differential equations (PDE)      17—42
Partial differential equations (pde) and coordinate transformation      22—23
Partial differential equations (pde) and symbol      29
Partial differential equations (pde), boundary and initial conditions for      18—20
Partial differential equations (pde), classification by characteristics      17 21—24
Partial differential equations (pde), classification by symbol (Fourier) analysis      28—30
Partial differential equations (pde), first-order      21 24
Partial differential equations (pde), linear      12
Partial differential equations (pde), principal part      28
Partial differential equations (pde), second order      17 21
Partial differential equations (pde), system of equations      24—28
Peclet number      294 305
Pentadiagonal systems of equations/matrix      131 185—188
Phase error      63
Phase, change of      289
Pipeline architecture      4 5
Pivoting, partial and Gauss elimination      180
Plane-wave propagation      287
Point source      41
Poisson equation      37—38 41—42 137
Poisson solvers, direct      190—192
potential flow      36
Power method for maximum eigenvalue determination      84
Prandtl number      319
Preconditioned conjugate gradient method      201—203
Predictor corrector scheme for ordinary differential equations      243
Primitive variables      34
Product approximation      360
Prolongation operator      204—206; see also “Multigrid method”
Pseudospectral method      151—154
Pseudospectral method in physical space      154—156
Pseudotransient method      208—212
Pseudotransient method and 2D steady Burgers' equation      209
Pseudotransient method and Newton's method      210
Pseudotransient method, comparison with Jacobi iteration      208
Quadridiagonal matrix      297 338
Quadridiagonal matrix and the Thomas algorithm      297 306
Quasi-Newton method      179
RESBU: evaluates residuals of 2D Burgers' equations      176
RESID: evaluates residuals required by Newton's method      169
Residual, equation      99 104 127 146 176
Residual, equation and multigrid method      203—207
Residual, equation, evaluation for finite element method      261 266
Restriction operator      204; see also “Multigrid method”
Reynolds number      2 8 27 59 294 305 319 325 339 369
RHSBU: evaluates right-hand side of Burgers' equations      370
Richardson extrapolation      89—92 241
Richardson extrapolation and operation count      91—92
Richardson extrapolation, active      91
Richardson extrapolation, passive      91
Richardson scheme      220
Robin boundary condition      20
Round-off error      74 79 80 86
Runge — Kutta method      242—245
Runge — Kutta method, explicit      242 244
Runge — Kutta method, implicit      243
Search direction and modified Newton's method      176
Semi-discrete form of partial differential equations      242
Separation of variables method      40—41
Serendipity elements      126
Shape (interpolation) functions      117
Shock formation      332
Shock wave      7 32 43
Shock wave and stationary Burgers' equation      351 352
Shock wave, propagation      353—355
Shock wave, propagation and Burgers' equation      339 346—348 357
Smoothness of solution and accuracy of representation      58 60 61 236
Spectral method      11 15 16 47 48 50 98 99 104 145—156 182
Spectral method and Burgers' equation      348
Spectral method and diffusion equation      146—149
Spectral method and Neumann boundary conditions      149—151
Spectral method and nonlinear terms      149
Spectral method in physical space      154
Splitting      see “Approximate factorisation”
Stability      15 55 73—75 79—88
Stability of ADI scheme      253
Stability of convection equation schemes      278 279
Stability of diffusion equation schemes      219
Stability of three-level scheme for 1D diffusion scheme      222
Stability of transport equation schemes      302 303
Stability, absolute for ordinary differential equations      244
Stability, at boundaries      88 238
Stability, matrix method and FTCS scheme      81
Stability, matrix method and generalised two-level scheme      82
Stability, matrix method and Neumann boundary-conditions      83—85
Stability, polynomial for ordinary differential equations      244
Stability, von Neumann method and FTCS scheme      85—86
Stability, von Neumann method and generalised two-level scheme      86—88
Steady flow problems, overall strategy      211 212
Stiff systems of equations      229 246
Stiff systems of equations and steady-state convergence      229 230
Streamline diffusion (artificial)      327
Strongly implicit procedure (SIP)      198—199
Strongly implicit procedure (SIP), modified (MSI) algorithm      199—200
Sturm — Liouville equation      126—135
STURM: computation of the Sturm — Liouville equation      130—134
Subdomain method      100 103 105 106 108
Successive over-relaxation (SOR) iterative method      111 139 193—198
Supercomputer      2
Supersonic flow      7 8 18 30 59
Symmetric SOR (SSOR) iterative method      194
System of algebraic equations      163—164
System of algebraic equations, nonlinear      164
System of governing equations      24—28 331 353—355
Tau method      151
Taylor series expansion      52
Taylor weak statement (TWS) of finite element method      292
Taylor — Galerkin finite element method      292
Temperature      3 11 12 48 65 166 277 305 318
Temperature front convection      305—306 312 313
Tensor product      138 139 256 377
Term-by-term finite element discretisation      136 139
Test function      100
TEXCL: semi-exact centreline solution      320 325
THERM: thermal entry problem      318—326
Thermal diffusivity      48 82
Thomas algorithm      130 136 183—184
Thomas algorithm and line iteration method      194
Thomas algorithm, block      188—189
Thomas algorithm, generalised      187—188
Three level explicit scheme      221 226
Three level fully implicit scheme      227
Three level generalised implicit scheme      229
TRAN: convection of a temperature front      305—316
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå