Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Tannehill J.C., Pletcher R.H., Anderson D.A. — Computational Fluid Mechanics and Heat Transfer
Tannehill J.C., Pletcher R.H., Anderson D.A. — Computational Fluid Mechanics and Heat Transfer



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Computational Fluid Mechanics and Heat Transfer

Àâòîðû: Tannehill J.C., Pletcher R.H., Anderson D.A.

Àííîòàöèÿ:

This comprehensive text provides basic fundamentals of computational theory and computational methods. The book is divided into two parts. The first part covers material fundamental to the understanding and application of finite-difference methods. The second part illustrates the use of such methods in solving different types of complex problems encountered in fluid mechanics and heat transfer. The book is replete with worked examples and problems provided at the end of each chapter.


ßçûê: en

Ðóáðèêà: Ìåõàíèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2nd edition

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 792

Äîáàâëåíà â êàòàëîã: 23.10.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Specific heat, ratio of      258
Speed of sound      7 328
Spherical coordinates      270—271
Split flux methods      377—386
Split-coefficient matrix (SCM) method      see "SCM method"
Splitting methods      139—143 230—232 628—630 670—671
Stability (conditions)      11 55—56 83—96
Stability (conditions) for boundary-layer equations      455—456
Stability (conditions) for systems of equations      91—96
Stability (conditions), neutral      116
Staggered grids      523 594—598 668
Stagnation point      7—8
Stanton number      475
Starting solution      see "Initial starting solution"
State principle of thermodynamics      258
Steger linearization      568 637
Steger — Warming splitting      13 376—381
Stream function      322—323 485—489 651—656
streamline      324
Streamwise pressure gradient      546 555—562 606—609
Stress tensor      252—253 265—266 269
Strong interaction region      538
Strong-interaction parameter      549
Strongly implicit methods      163—165 652
Subgrid-scale model      285 320—321
Subgrid-scale stress      284
Sublayer approximation technique      560
Subsonic flow      352 415 429
Substantial derivative      251
Successive over-relaxation (SOR)      12 156—158
Sudden expansion flow      505
Superbee limiter      216
Supersonic flow      352
Sutherland's formula      259
Symmetric successive over-relaxation (SSOR)      158
Taylor series      47 52 68
Taylor series for obtaining finite-difference equations      61—64
Telegraph equation      41
Tension splines      687
Thermal conductivity, coefficient of      256
Thermal diffusivity      290
Thermal nonequilibrium      262
Thermally perfect gas      259
Thermodynamic variables      258
Thin-layer Navier — Stokes equations      541—545 624
Thin-shear-layer equations      see "Boundary-layer equations"
Thomas algorithm      114—115 151—152 715—716
Three-dimensional boundary layers      512—530
Three-dimensional boundary layers, equations for plane of symmetry      518—519
Three-dimensional boundary layers, example calculations      528—530
Three-dimensional boundary layers, governing equations      297—299 513—519
Three-dimensional boundary layers, zone of dependence      519—521
Time-averaging procedure      see "Averaging procedures for turbulent flow"
Time-centered implicit method for inviscid Burgers' equation      192—195
Time-centered implicit method for wave equation      120—122
Time-dependent approach      371 624—625
TLNS3D code      633
TM formulation      692
Total energy      256
Total enthalpy      274
Total variation diminishing (TVD)      13 207—208 see
Transfinite interpolation      687—688
Transformations      25—27 333—341 543—545 681—688
Transformations for boundary-layer equations      466—470
Transformations for internal flows      498
Transformations for Navier — Stokes equations      340—341 543—545
Transformations, general      333—341 543—545
Transformations, independent variable      25—27 333—341 543—545 681 688
Transformations, rectangularizing      337—338 681—684
Transformations, Roberts      334—336
Transformations, stretching      333—337
Transonic flow      331 413 427—431
Transonic similarity parameter      428
Transonic small-disturbance equation      331 427—431
Transport equation      444
Transport properties      258 262—263
Trapezoidal differencing      120—121 131 193
Tricomi equation      40
Tridiagonal matrix      114—115 151—152 715—716
Tridiagonal system      51 114—115 151—152 715—716
Triple-deck theory      479 495—496
Truncation error      47 52—54
TUFF code      642
Tuned third-order methods      190—192
Turbulence intensity      274
Turbulence kinetic energy      300
Turbulence kinetic energy equation      310—312
Turbulence modeling      283 299—321
Turbulent flow      272—273
Turbulent Prandtl number      304 443 624
Turbulent thermal conductivity      304 624
Turbulent viscosity      299—300 443
Turbulent viscosity models      299—301
TVD schemes for Euler equations      395—398
TVD schemes for inviscid Burgers' equation      207—217
TVD schemes for Navier — Stokes equations      641—642
TVD schemes for PNS equations      580
Two-equation turbulence model      313—317
Type-dependent differences      415—417
Under-relaxation      157
Unequal grid schemes for boundary layers      472—473
Universal gas constant      260
Unsteady boundary-layer flow      530—532
Upper triangular form      149
UPS code      574
Upstream differencing method      103—112
Upstream influence      546 560—562 607—609 665—667
Upwind method, first-order      103—112
Upwind method, second-order      119—120
Upwind method, third-order      224
Upwind schemes for Euler equations      376—384 386—402
Upwind schemes for Navier — Stokes equations      641—642
Upwind schemes for PNS equations      574—582
Upwind schemes, higher order      204—207
USA codes      641—642
Van Albada limiter      216
van der Waals equation of state      258
van Driest damping function      301
van Leer flux splitting      13
van Leer flux splitting for Euler equations      381—383
van Leer flux splitting for Navier — Stokes equations      642
van Leer limiter      216
van Leer MUSCL approach      see "MUSCL approach"
Variable secant procedure      483—484 502 602
Variational methods      698—700
Vector form of governing equations      263—264
Vector potential      657—659
Vector processing      159—160
Velocity corrections, $\rho^{'}$ method      589—590
Velocity corrections, $\widehat{\phi}$ method      589 599—600
Velocity potential      18 329
Velocity potential equation      330
Vibrational nonequilibrium      262 584
Vigneron parameter      556—559
Vigneron technique      13 560—561 564—565
Viscosity, coefficient of      see "Dynamic viscosity"
Viscous shock-layer equations      541 609—614
Viscous stress tensor      253
Viscous sublayer      302—303 470—471
Viscous-inviscid interaction      489—496
Volumetric expansion coefficient      290
von Karman constant      301
Von Neumann analysis      11 84—96
von Neumann necessary condition      93
Voronoi dual      386
Voronoi polygon      704
Vorticitv      324 650—651
Vorticity transport equation      651
Vorticity-stream function approach      650—659
VSL equations      see "Viscous shock-layer equations"
Wachpress parameters      163
Wake-like region      302
Wall functions      471
Warming — Kutler — Lomax method for inviscid Burgers' equation      189—190
Warming — Kutler — Lomax method for wave equation      123—124
Wave equation, first-order      40 87—88 94—96 102
Wave equation, second-order      21—22 26—29 89 102
Wave equation, two-dimensional      638
Wave length      85
wave number      85 110
Wave speed      88 102
Weak solution      177—180
Weak-interaction region      538
Wedge flow      367—371
Weighted residual methods      442
Well-posed      33—34 555
Wilcox turbulence model      314
Windward differencing method      see "Upstream differencing method"
Zero-equation model      301—308
Zone of dependence      519—520
Zone of dependence, principle      519—521
Zone of influence      519—520 see
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå