Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Doi M., See H. — Introduction to Polymer Physics
Doi M., See H. — Introduction to Polymer Physics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Introduction to Polymer Physics

Àâòîðû: Doi M., See H.

Àííîòàöèÿ:

A polymer is a very large molecule consisting of many atoms covalently bonded like a chain. Polymers take a random coil conformation in solution and entangle each other when the polymer concentration is high. The unique structure gives unique physical properties to polymer solutions. This book is an introduction to the modern theory of polymer physics. It describes basic concepts and methods to discuss the statistical properties of the assembly of chain-like molecules. This involves scaling theory, concentration fluctuation, gels and reptation.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 136

Äîáàâëåíà â êàòàëîã: 16.04.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Affine deformation assumption      48 61 110
Bead-spring model      7 66 71—75 106
Bead-spring model, Zimm modification      78 (see also “Gaussian chains”)
Birefringence, effect of stress      54 55 104
Blends (of polymers)      38—40
Block copolymers      40—41
Block copolymers, microscopic phase separation in      40 41
Block copolymers, microscopic phase separation in domain size estimation      43—44
Bonds, meaning of term      2
Bonds, orientation, in stretched chains      51—53
Brownian motion and reptation model      96—99
Brownian motion in potential field      67—68
Brownian motion of harmonic oscillator      70—71
Brownian motion of spherical particles      66—67
Brownian motion, bead-spring model used      71—73
Brownian motion, Einstein relation      68—70
Brownian motion, features of Rouse model      73—75
Brownian motion, hydrodynamic interactions accounted for      78
Brownian motion, theory      66—71
Centre of mass (of polymer)      9
Centre of mass (of polymer), motion in concentrated solutions      96—97
Centre of mass (of polymer), motion in dilute solutions      73—74
Chemical gels      45
chemical potential      23—24
chi $(\chi)$ parameter      14 23
Co-operative diffusion coefficient      90—92
Co-operative diffusion coefficient, concentration dependence      92
Coexistence curves      28 29
Coexistence curves, polymer-polymer mixtures      38—39
Coil-globule transition      15 16
Concentration fluctuation correlation function      30
Concentration fluctuation correlation function, block copolymer uniform phase      41—43
Concentration fluctuation correlation function, miscible systems      39—40
Concentration fluctuations      29—38
Concentration fluctuations, dynamics      89—93
Configuration changes, in lattice model of reptation      100
Constitutive equation      103
Contractual motion (of polymer in tube)      102
Copolymers, block copolymers      40—41
Correlation function      see “Concentration fluctuation...; segment pair...; time...; velocity correlation function”
correlation length      35
Correlation length, semidilute solutions      37
Critical point      28—29
Critical point, polymer-polymer mixtures      39
Critical temperature      28
Crosslinking reaction      46
Cylindrical domains, in block copolymers      40 41
Deformation gradient tensor      47 48
Degree of polymerization      1
Diffusion coefficient, concentrated solutions      90—92
Diffusion coefficient, dilute solutions      67 69
Diffusion equation, derivation of      86—87
Dilute solution, molecular motion in      65—88
Dilute solution, single polymer molecule studied      1
Directional order parameter tensor      51
Directional order parameter tensor and stress tensor      54—56
Directional order parameter tensor, calculation of      53
Dynamic light scattering      82—86 89
Dynamic scaling law      81—82
Dynamic structure factor, concentrated solutions      90 91
Dynamic structure factor, dilute solutions      82—83 84
Dynamic structure factor, initial decay rate      92—93
Edwards-de Gennes [‘tube'] model      59 94
Effective bond length      6
Einstein relation      68—70 71
Elastic free energy, rubber      47—48
Elasticity, Kuhn's theory      47—48 50
Elasticity, rubber      46—50
Elasticity, tube model      61—62
End-to-end vector      2
End-to-end vector, probability distribution function      3—4 48 97
Energy, Gaussian chain model      7
Energy, polymer-solvent interactions      12—13
Entangled polymer systems, molecular motion in      89—113
Entanglement effects, and tube model      93—94
Entanglement interactions      20 59—62 89
Entropy of mixing      38
Entropy, stretched chain      51
Escape time      101 (see also “Reptation time”)
Excluded volume chain      10
Excluded volume chain, lattice model      12 13
Excluded volume chain, probability distribution function      11
Excluded volume effect      10—12 92
Excluded volume interactions      4 56 89
Excluded volume interactions in rubber elasticity      56
Excluded volume interactions, screening of      37
Excluded volume parameter      14 35
Extensional characteristic time      102
Extensional motion [of polymer in tube]      102
First normal stress difference      50
First normal stress difference coefficient, variation with shear rate      104
Flory — Huggins theory      21—23 38 56 63
Fluctuation-dissipation theorem      69
Fluorescence microscopy      65
Free energy of mixing      23 26—28 62—63
Free energy, phase-separated system      27
Free energy, rubber elasticity      47—48
Free energy, solutions      23 (see also “Elastic...; Gibbs...; Helmholtz free energy”)
Freely jointed chain      51 52
Gaussian chains      6—7 (see also “Bead-spring model”)
Gaussian probability distribution      4 6
Gelation      45 46
Gels      45—64
Gels, swelling of      62—64
Gibbs free energy      23
Gibbs — Duhem relation      24
Harmonic oscillator, Brownian motion of      70—71
Harmonic spring      7
Helmholtz free energy      23
Hydrodynamic interactions      75 76—82 89
Hydrodynamic radius      16
Hydrodynamic radius, variation with temperature      16
Ideal chain      2—7
Ideal chain, meaning of term      5
Ideal chain, tension in      46
Internal motion of polymer chain      74—75
Isolated polymer molecule, properties      1—19
Kirkwood's equation      85
Kuhn's theory (of rubber elasticity)      47—48 50
Lamellar structure      41 43—44
Langevin equation      68 70 72 107
Lattice model      2 3
Lattice model, concentrated solutions      21 22 30
Lattice model, elasticity of rubber      46
Lattice model, excluded volume chain      12 13
Lattice model, reptation motion      94—96
Light scattering, dynamic effects      82—86
Linear viscoelasticity      105
Long-range interactions      6
Mean field approximation      16 21 32
Melts      20—21 29
Microscopic phase separation, in block copolymers      40 41
Miscibility parameter      43
Miscible systems, correlation function      39—40
Mixing free energy      23
Mixing free energy and gel swelling      62—63
Mixing free energy and phase separation      26—28
Mobility matrix      70 76—78
Molecular motion in dilute solution      65—88
Molecular motion in entangled polymer systems      89—113
Monomer unit      1
Nematic interactions      57—59
Non-ideal chains      10—16
Non-linear viscoelasticity      112—113
Normal stress difference, first      50
Normal stress difference, second      50
Normalized coordinates      72 74 79 108
Optical anisotropy      54
Orientational order parameter tensor      51
Orientational order parameter tensor and stress tensor      54—56
Ornstein — Zernike type distribution function      10
Oseen tensor      77 84
Osmotic pressure      24—26
Osmotic pressure anomaly      25
Osmotic pressure, semidilute solutions      36—37
Overlap concentration      20 89
Pair correlation function      see “Segment pair correlation function”
Partial chains      47
Partial chains, interactions between      56—62
Partition function      21
Phantom chain models      59
Phase diagrams, polymer solution      28
Phase diagrams, polymer-polymer mixtures      38—39
Phase separation (of polymers)      26—29
Phase transitions, microscopic, in block copolymers      40 41
Phase transitions, volume change in gel swelling      64
Physical gels      45
Polymer blends      38—40
Polymer gels      45—64
Polymer melts      20—21 29
Polymer melts, stress optical law      56fn. 104 107
Polymer, meaning of term      1
Potential field, Brownian motion in      67—68
Preaveraging approximation      78
Radius of gyration      8—9
Radius of gyration in semidilute solutions      37—38
Random phase approximation      32—34
Random walk model      2—4
Renormalization theory      16—17
Reptation model      89 94—96
Reptation model, Brownian motion studied using      96—99
Reptation model, fluctuation of tube length      101—103
Reptation model, viscoelasticity      109—113
Reptation time      99 101
Response function      31
Rotational motion, concentrated solutions      97—99
Rotational motion, dilute solutions      74
Rotational relaxation time      74 99
Rouse model      72
Rouse model, comparison with experiments      75
Rouse model, reptation motion      95
Rouse model, viscoelasticity      107—109
Rouse theory      71—73
Rubber      45
Rubber elasticity      46—50
Rubber elasticity, effect of entanglements      59
Rubber elasticity, Kuhn's theory      47—48 50
Rubber elasticity, tube model used      61—62
Rubber, elastic free energy      47—48
Scaling laws      16—19
Scaling laws, dynamic scaling law      81—82
Scaling laws, examples of application      18 35—38
Second normal stress difference      50
Segment pair correlation function      7—8 9—10 18 84
Segments, distribution in polymer chain      7—10
Segments, meaning of term      2
Segments, motion in dilute solution      74—75
Self-avoiding walk      10
Self-diffusion constant      91
Self-diffusion constant, calculation for concentrated solutions      93 97
Self-diffusion constant, concentration dependence      92
Self-diffusion constant, factors affecting      97 98
Semidilute solutions      35—38
Shape memory function      99—101
Shear elastic modulus      49
Shear flow      103 104 108
Shear strain      49
Short-range interactions, effects      4—6
Short-range interactions, meaning of term      6
Solutions      see “Concentrated...; dilute...; semidilute solutions”
Solvent effects      12—14
Spherical domains, in block copolymers      40 41
Spherical particles, Brownian motion of      66—67
Spinodal line      28
Spinodal point      43
Spring constant (in bead-spring model)      7 47
Static structure factor      92
Stress optical law      51—56
Stress optical law coefficient      58
Stress optical law, applications      54—55 104
Stress optical law, formula      54
Stress optical law, range of applicability      54 104 107
Stress relaxation experiment, non-linear      112—113
Stress relaxation experiment, stress relaxation function      105 111
Stress relaxation experiment, viscoelastic, polymer liquids      110—112
Stress tensor and viscoelasticity      105—106
Stress tensor in shearing deformation      49
Stress tensor in uniaxial extension      50
Stress-strain relationship, rubber elasticity      48—50
Structural unit      1
Structure factor, dynamic      82—83 84 90 91
Structure factor, static      92
Thermal motion, and elasticity of rubber      46—47
Theta $(\Theta)$ temperature      15 26
Time correlation function      87—88 89—90
Tube model      59—60
Tube model, entanglement effects      93—94
Tube model, rubber elasticity      61—62
Uniaxial extension      49 50
van der Waals forces, interactions due to      13 14
Van't Hoffs law      24—25 26
Velocity correlation function      66 67
Velocity correlation time      66
Viscoelasticity      103
Viscoelasticity, linear      105
Viscoelasticity, microscopic model of stress used      105—107
Viscoelasticity, non-linear      112—113
Viscoelasticity, phenomenological theory      103—105
Viscoelasticity, reptation model used      109—113
Viscoelasticity, Rouse model used      107—109
viscosity      104 105 109
Viscosity, relationship with molecular weight      109 111
Viscosity, variation with shear rate      104
Volume phase transition      64
Zimm theory      78—81
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå