Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Chelliah P.-R., Sakthivel U., Nagarajan S. — Applied Learning Algorithms for Intelligent IoT
Chelliah P.-R., Sakthivel U., Nagarajan S. — Applied Learning Algorithms for Intelligent IoT



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Applied Learning Algorithms for Intelligent IoT

Авторы: Chelliah P.-R., Sakthivel U., Nagarajan S.

Аннотация:

This book vividly illustrates all the promising and potential machine learning (ML) and deep learning (DL) algorithms through a host of real-world and real-time business use cases. Machines and devices can be empowered to self-learn and exhibit intelligent behavior. Also, Big Data combined with real-time and runtime data can lead to personalized, prognostic, predictive, and prescriptive insights. This book examines the following topics:
1. Cognitive machines and devices.
2. Cyber physical systems (CPS).
3. The Internet of Things (IoT) and industrial use cases.
4. Industry 4.0 for smarter manufacturing.
5. Predictive and prescriptive insights for smarter systems.
6. Machine vision and intelligence.
7. Natural interfaces.
8. K-means clustering algorithm.
9. Support vector machine (SVM) algorithm.
10. A priori algorithms.
11. Linear and logistic regression.
Applied Learning Algorithms for Intelligent IoT clearly articulates ML and DL algorithms that can be used to unearth predictive and prescriptive insights out of Big Data. Transforming raw data into information and relevant knowledge is gaining prominence with the availability of data processing and mining, analytics algorithms, platforms, frameworks, and other accelerators discussed in the book. Now, with the emergence of machine learning algorithms, the field of data analytics is bound to reach new heights.

This book will serve as a comprehensive guide for AI researchers, faculty members, and IT professionals. Every chapter will discuss one ML algorithm, its origin, challenges, and benefits, as well as a sample industry use case for explaining the algorithm in detail. The book’s detailed and deeper dive into ML and DL algorithms using a practical use case can foster innovative research.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Неизвестно

Год издания: 2022

Количество страниц: 368

Добавлена в каталог: 26.01.2025

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте