Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Ryder L.H. — Quantum Field Theory
Ryder L.H. — Quantum Field Theory



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Quantum Field Theory

Àâòîð: Ryder L.H.

Àííîòàöèÿ:

This book is a modern introduction to the ideas and techniques of quantum field theory. After a brief overview of particle physics and a survey of relativistic wave equations and Lagrangian methods, the author develops the quantum theory of scalar and spinor fields, and then of gauge fields. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a brief survey of "topological" objects in field theory and, new to this edition, a chapter devoted to supersymmetry. Graduate students in particle physics and high energy physics will benefit from this book.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2nd

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 507

Äîáàâëåíà â êàòàëîã: 06.04.2007

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$e^+$ $e^-$ annihilation      20
action      160
Action, effective      160
Action, principle of least      80
Adiabatic hypothesis      165
Adjoint representation of group      113
Anderson      287
Annihilation experiments      20
Annihilation operator      131
Anomalous dimensions      326
Anomaly ABJ      368
Anomaly chiral (axial, triangle)      366—374 384
Anomaly, cancellation of anomaly      373—374
Anticommutation relation      139 455
Antiparticles      42—46 140
Asymptotic condition      221
asymptotic freedom      328
Asymptotic freedom of Yang — Mills theories      353—362 389
Auxilliary fields      444 450
Baker — Campbell — Hausdorff formula      199 222 460
Bare Lagrangian      324
Baryon number      6
BCS theory      297
Becchi — Rouet — Stora transformation      270—272
Bianchi identity      76 121
Bilinear Dirac quantities      46—48
Bohm — Aharonov effect      98—105 125
Boundary operator      70
Brouwer degree      410 418
c-number      159
c-number, anticommuting      210
Cabibbo angle      23
Callan — Symanzik equation      329 388
Casimir invariants      60 63
Chain      70
Charm      8
Chiral anomaly      366—374 389
Chirality      48
Coleman      288 379
Colour      4 18—22 121—124
Connected diagram      207
Connected diagram, generating functional for connected diagram      207—210
Connection coefficient      116
Connection form      76
Contravariant vector      25
Coset      290
Coulomb potential, modification of Coulomb potential      342
Coulomb scattering      170—172
Counter-terms      321—324
Covariant derivative      95 115
Covariant derivative in Weinberg-Salam model      300 301
Covariant vector      25
CP invariance, violation of CP invariance      422
CPT theorem      429
Creation operator      131
Delta functional      248
Derivative coupling      238
Differential form      70 78
Differential geometry      69—76
Dimensional regularization of $\phi^4$ theory      313—318 388
Dimensional regularization of QED      329—37 388
Dirac equation      29—42 77
Dirac equation, bilinear expressions      46—48
Dirac equation, electron magnetic moment      52—55
Dirac equation, negative energy states      44—45 138
Dirac equation, non-relativistic limit      52—55
Dirac field quantisation      137—140
Dirac field, qenerating functional for Dirac field      214
Dirac matrices      46-52
Dirac matrices in d dimensions      333
Dirac matrices, chiral representation      48 430
Dirac matrices, slash notation      52
Dirac matrices, standard representation      48
Dirac monopole      402—406 424
Dirac monopole quantisation condition      403
Dirac sea      45
Disconnected graph      207
Divergences in $\phi^4$ theory      308—313
Divergences in QED      329—337
Divergences, infrared      308
Divergences, overlapping      321 349
Divergences, primitive      311
Divergences, superticial degree of divergences      309
Divergences, ultraviolet      309
Domain wall      306
Dotted and undotted spinors      39 434
Dual tensor      67
Duality transformation      74
d’Alembertian operator      27 73
effective Lagrangian      250 264
Effective potential      377—380 389
Effective potential, loop expansion of effective potential      380—382
Einstein      2
Einstein, field equations      26 88
Electromagnetic field quantisation      140—150 240—245
Electromagnetic field tensor      65 95
Electromagnetic interaction      5 305
Energy-momentum tensor      85 90
Energy-momentum tensor, canonical      88 125
Energy-momentum tensor, symmetric      88
Equal-time commutation relations      128 136
Euclidean group      63
Euclidean space      185
Euler — Langrange equation      84
Euler — Maseheroni constant      314
Exterior derivative operator      72
Exterior derivative, adjoint      74
Faddeev — Popov ghost      250
Faddeev — Popov technique      245—254 281
Faraday 2-form      75
Fermi      4
Fermi Golden Rule      234
Fermi theory of weak interactions      4 312
Fermion loop      217
ferromagnetism      283—284 286
Feynman formula      315
Feynman gauge      146 243 377
Feynman propagator      184—186 242 243
Feynman rules for scalar field      189 207 231—232
Feynman rules for spinor field      231—232
Feynman rules in axial gauge      254
Feynman rules in Lorentz gauge      250—253
Feynman rules in non-Abelian gauge theories      252—253
Feynman rules in non-relativistic quantum mechanics      166 167 170
Field quantization, canonical      126—152
Field quantization, path-integral      182—217 240—281
Fierz rearrangement formula      444—445
Fixed points      327
Flavour      122
Flavour, number of flavours      357
Form factor      16
Four-point function      204—206
Four-vector potential      65 94
Functional differentiation      173—174
Functional differentiation and fermions      210
Functional integral      159 172
Functional integration      186—188
Functional integration and fermions      210—217
Fundamental group      103 104
Furry’s theorem      332 350
Gauge fields, geometry of gauge fields      112—124
Gauge fields, ghost coupling      252
Gauge fields, masslessness of gauge fields      97 110
Gauge fields, matter coupling      253
Gauge fields, non-Abelian      2 105 118 241 245—254
Gauge fields, path-integral quantisation      240ff
Gauge fields, propagator      252 254
Gauge fields, self-coupling vertices      253
Gauge fields, spontaneous symmetry breaking      293ff
Gauge invariance      97
Gauge principle      79 125
Gauge transformation      66
Gauge transformation of first kind      91 106
Gauge transformation of potential      116
Gauge transformation of second kind      93
Gauge transformation, global      93 284
Gauge transformation, local      93 294
Gauge, Feynman      146 243 377
Gauge, Landau      246 377
Gauge, pure      396 417
Gauge, R      376
Gauge, U      295 377
Gauge, ’t Hooft      375—377
Gauge-fixing term      146 242—243 250
Gaussian Integrals      179
Gell — Mann — Nishijima relation      14 15 300
General relativity      88 109 117 119 121
Generating functional      182ff 255
Generating functional for $\phi^4$ theory      200ff
Generating functional for connected diagrams      207ff
Generating functional for Dirac field      214
Generating functional for interacting fields      196ff
Generating functional, normalised      191 202
Generation problem      374
Generations of leptons      299
Ghost field      241 250 253 281
Ghost field and unitarity      276ff 281
Ghost field propagator      252
Ghost field, gauge field coupling      252
Glashow      4 282
Gluon      4 22 124
Goldstone      282 307
Goldstone boson      286 287 293 294
Goldstone theorem      287—93 306
Graded Lie algebra      458
Grand Unified Theory (GUT)      5 6 427
Grassmann algebra      210 214 239
Grassmann quantities      433 454
Gravitation      2
Gravitational field      2
Gravitational radiation      2
Graviton      2
Green’s function for free scalar particle      189ff 255
Green’s function for Schrodinger equation      164
Green’s function, advanced and retarded      219
Green’s function, connected      255
Green’s function, generating functional for Green’s function      189ff
Gupta — Bleuler formalism      150 294
Hausdorff formula      199 222 460
Hawking effect      223(f)
Hedgehog solution      407
Helicity      42
Higgs      282
Higgs field      301
Higgs phenomenon      294ff 307 397
High temperature restoration of symmetry      306 307
Hodge star operator      74
Homotopic paths      103
Homotopy group      104 125
Homotopy group, first      104 399
Homotopy group, second      410
Homotopy group, third      414
Huygens’ principle      155
Inelastic scattering      16—17
Instanton      414ff 425
Interacting fields, generating functional for interacting fields      196ff
Invariant function $\Delta(x)$      136
Isospin      13 105 111
Isospinor      113
Jacobi identity      113
Jets      20 22
Kink, sine-Gordon      391ff
Klein — Gordon equation      27ff
Klein — Gordon field      126ff
Klein — Gordon operator      218
Lamb shift      342
Landau gauge      243 377
Landau singularity      346
Landau-Ginzburg free energy      297 397
Laplacian operator      73
Least action, principle of      80
Left derivative      210
Legendre transformation      258
Legendre transformation, geometrical interpretation      260—262
Legendre transformation, thermodynamic analogy      262—263 281
Lepton      6
Lepton generations      299
Lepton number      6
Lepton-hadron symmetry      374
Lie algebra      57 63
Lie algebra, graded      458
Lie group      31
Lightlike interval      25
Lightlike particles      63
Little group      61
London equation      297
Longitudinal photons      147
Loop expansion      317—318 380—382
Loop fermion      217
Loop ghost      280
Lorentz formula      98
Lorentz gauge      66 141
Lorentz gauge quantisation      145ff
Lorentz gauge, Feynman rules in Lorentz gauge      250ff
Lorentz group      36ff 77 427ff
Lorentz group, boost matrix      36—37
Lorentz group, generators      37 57—59
Lorentz group, inhomogeneous      40 56
Lorentz group, Lie algebra      57—59 427—428
LSZ condition      221
Magnetic flux      396—7
Magnetic moment, anomalous      343—345 388
Magnetic moment, electron      1 52—55
Magnetic moment, muon      345 388—389
Magnetic monopole (charge)      110
Magnetic monopole, Dirac      402ff
Magnetic monopole, ’t Hooft — Polyakov      406ff
Majorana condition      435
Majorana condition, spinor      429
Mandelstam variables      316
Mass and Poincare group      56 60
Mass, neutrino      42
Mass, physical (renormalised)      204 257
Mass, zero limit      63—64
Maxwell equations      64ff 69ff 96 110 121
Meissner effect      297—298
Metric tensor      26
Metric tensor in spinor space      432
Muon, magnetic moment      345 388—389
n-point function      191 255
n-point function, irreducible      209
Nambu      282
Negative energy in Dirac equation      45 138
Negative energy in Klein-Gordon equation      29
Neutral current process      305
Neutrino mass      42
Nielsen — Olesen flux line      398—399
Noether’s theorem      85—87 125
Non-Abelian gauge fields (Yang-Mills fields)      2 105 118 241 245—254
Non-Abelian gauge fields, asymptotic freedom of non-Abelian gauge fields      353—362 389
Non-Abelian gauge fields, Faddeev — Popov method      245—254
Non-Abelian gauge fields, renormalisability      276
Non-Abelian gauge fields, renormalisation of non-Abelian gauge fields      302ff 375ff
Normal ordering      132 145
Normalisation of generating functional      191 202
Normalisation, covariant      133
Normalisation, non-covariant      133
Null interval      25
Number operator      130
O(3)      30ff
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå