In 1984, N. Karmarkar published a seminal paper on algorithmic linear programming. During the subsequent decade, it stimulated a huge outpouring of new algorithmic results by researchers world-wide in many areas of mathematical programming and numerical computation. This book gives an overview of the resulting, dramatic reorganization that has occurred in one of these areas: algorithmic differentiable optimization and equation-solving, or, more simply, algorithmic differentiable programming. The book is aimed at readers familiar with advanced calculus, numerical analysis, in particular numerical linear algebra, the theory and algorithms of linear and nonlinear programming, and the fundamentals of computer science, in particular, computer programming and the basic models of computation and complexity theory.
J.L. Nazareth is a Professor in the Department of Pure and Applied Mathematics at Washington State University. He is the author of two books previously published by Springer-Verlag, DLP and Extensions: An Optimization Model and Decision Support System (2001) and The Newton-Cauchy Framework: A Unified Approach to Unconstrained Nonlinear Minimization (1994).