Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Y. Komori, V. Markovic, C. Series — Kleinian Groups and Hyperbolic 3-Manifolds
Y. Komori, V. Markovic, C. Series — Kleinian Groups and Hyperbolic 3-Manifolds



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Kleinian Groups and Hyperbolic 3-Manifolds

Авторы: Y. Komori, V. Markovic, C. Series

Аннотация:

This volume forms the proceedings of the workshop Kleinian Groups and Hyperbolic 3- Manifolds which was held at the Mathematics Institute, University of Warwick, 11–15 Septem- ber 2001. Almost 80 people took part, many travelling large distances to come.
The workshop was organised around six expository lectures by Yair Minsky on the combi- natorial part of his programme to extend his results on Thurston’s ending lamination conjecture for once punctured tori to general surfaces. Not long after the workshop, a complete proof of the conjecture was announced by Brock, Canary and Minsky. This is undoubtedly one of the most important developments in the subject in the last decade, paving the way for a complete under- standing of the internal geometry of hyperbolic 3-manifolds, and involving deep understanding of the fascinating links between this geometry and the combinatorics of the curve complex. Minsky’s lectures, reproduced in this volume, give an invaluable overview.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 363

Добавлена в каталог: 07.11.2022

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте