Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
J. Hendler, H. Kitano, B. Nebel — Foundations of Artificial Intelligence
J. Hendler, H. Kitano, B. Nebel — Foundations of Artificial Intelligence



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Foundations of Artificial Intelligence

Авторы: J. Hendler, H. Kitano, B. Nebel

Аннотация:

Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, computer science, databases, programming languages, and operations research. Constraint programming is currently applied with success to many domains, such as scheduling, planning, vehicle routing, configuration, networks, and bioinformatics. The basic idea in constraint pro- gramming is that the user states the constraints and a general purpose constraint solver is used to solve them. Constraints are just relations, and a constraint satisfaction problem (CSP) states which relations should hold among the given decision variables. For exam- ple, in scheduling activities in a company, the decision variables might be the starting times and the durations of the activities and the resources needed to perform them, and the con- straints might be on the availability of the resources and on their use for a limited number of activities at a time.
Constraint solvers take a real-world problem like this, represented in terms of deci- sion variables and constraints, and find an assignment to all the variables that satisfies the constraints. Constraint solvers search the solution space either systematically, as with backtracking or branch and bound algorithms, or use forms of local search which may be incomplete. Systematic method often interleave search and inference, where inference consists of propagating the information contained in one constraint to the neighboring constraints. Such inference (usually called constraint propagation) is useful since it may reduce the parts of the search space that need to be visited.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2006

Количество страниц: 945

Добавлена в каталог: 10.10.2022

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте