Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Behrend R.E., Pearce P.A. — Conformal Field Theories and Integrable Models
Behrend R.E., Pearce P.A. — Conformal Field Theories and Integrable Models



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Conformal Field Theories and Integrable Models

Авторы: Behrend R.E., Pearce P.A.

Аннотация:

Journal of Statistical Physics, Vol. 102, Nos. 34, 2001, p. 577-640.
Integrable boundary conditions are studied for critical A-D-E and general graph-based lattice models of statistical mechanics. In particular, using techniques associated with the Temperley-Lieb algebra and fusion, a set of boundary Boltzmann weights which satisfies the boundary Yang-Baxter equation is obtained for each boundary condition. When appropriately specialized, these boundary weights, each of which depends on three spins, decompose into more natural two-spin edge weights. The specialized boundary conditions for the A-D-E cases are naturally in one-to-one correspondence with the conformal boundary conditions of sl(2) unitary minimal conformal field theories. Supported by this and further evidence, we conclude that, in the continuum scaling limit, the integrable boundary conditions provide realizations of the complete set of conformal boundary conditions in the corresponding field theories.


Язык: en

Тип: Журнал Lecture Notes in Physics

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 250

Добавлена в каталог: 29.07.2021

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте