|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Scott D.S. — Axiomatic Set Theory, Volume 13, Part 1 (Symposium in Pure Mathematics Los Angeles July, 1967) |
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
|
Название: Axiomatic Set Theory, Volume 13, Part 1 (Symposium in Pure Mathematics Los Angeles July, 1967)
Автор: Scott D.S.
Язык:
Рубрика: Математика/
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1971
Количество страниц: 480
Добавлена в каталог: 22.06.2020
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
|
|
|
Предметный указатель |
Measurable cardinal 4 392
Measure of complexity 219
Mendelsohn, N. S. 456 466
Mendelson, E. 450 466
Milner, F. C. 17 27 39 48
Mitchell, Barry 232
Model-class 135
Montague, R. 183 187 223 227 230 253 264
Morley, M. 178 187 388 390
Morphisms 232
Moschovakis, Y. N. 247 248 264
Mostowski, Andrzej 133 321 330 358 381 409 428 447 449 451 466
Mostowski-, Fraenkel-, type models 447
Multiple choice axiom 447
Multiple ordinal characterizations of 462
Mycielski, Jan 265 265 266 266 446
Myhill, John 267 271
Namba, Kanji 279 319
NAME 362
Natural transformations 232
Nontrivial set 448
normal 136
Normal class 215
Normal ultrafilter 392
Normally measurable cardinal 286
Notion of forcing 360
Novk, J. 319
Objects 232
Objects of type 205
OD form 369
OD-rule 429
Ordering theorem 84
Ordinal 121
Ordinal characterizations of multiple choice axioms 462
Ordinal number 448
Ordinal regular 207
Ordinal-definable set 272
Ordinary partition symbol 19
Organization and foundation 191
Pikr, K. 80 342 355 411 428
Pairing, axiom of 323
Paradox 323
Paradox Cantor's 323 324 325
Parallel axiom 195 196
Partition relations 5
Platek, R. 144 158 176 222 230 351 355
Poincar, H. 324 330
Pointed 351
Pointedly generic 352
Polarized partition relations 29
Post, E. L. 277 278 352 353 355
Power set axiom of 101 107 326 439
Power set reflection principle on 440
Pozsgay, Lawrence 321
Predicate calculus, first order 103
Predicatively definable class 248
Prime set for 456
Primitive ordinally 146
Primitive recursive set function 145
PRODUCT 238
Product theorem 367
Proper Classes 324
Putnam, H. 330 347 353 354 355
Quine, W. V. 84 133 273 278
Rdding, D. 176
Rado, R. 17 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34 48
Ramified hierarchy 441
Ramsey cardinals 279
Ramsey theorem 19
Ramsey, F. P. 19 48 327 330
Rank 358
Real-measurable cardinals 399
Reflection principle 272 430 439
Reflection principle on power set 440
Reflection property 179
Reflection property 199
Regular cardinal 358
Regular ordinal 207
Relative consistency 389
Relative constructibility 84
Relative constructible 391
Relativizations to 112
Replacement, axiom of 327
Restricted formula 220
Restricted quantifier 220
Ricabarra, R. A. 385 388 390
Rieger, L. 67
Roberts, J. B. 456 466
Robinson, A. 190 195 198 228 230
| Rogers, H.Jr. 349 355
Rosser, J. B. 430 438
Rowbottom, F. 4 5 6 8 241 245 385 389 390 393 395 406 428
Rubin, H. 83 134
Rubin, J. E. 83 134 233 240
Russell, Bertrand 327 330
Ryll-Nardewski, C. 133
Sacks, G. E. 157 176 331 332 335 343 345 346 348 351 352 354 355
Samuel, Pierre 233 240
Satisfaction class 210
Scarpellini, B. 84 134 229 230
Scott, Dana 1 4 8 101 134 135 141 158 176 187 200 203 205 206 215 218 244 245 271 273 278 384 390 410 411 412 413 414 417 421 422 428
Second arithmetic 50
Second order 196
Section 372
Seelbinder, B. M. 456 466
Semisets 71
Semiuniversal class 444
Separation, axiom of 326
Set Mappings 34
Set theory 49 83
Set theory 90
Set theory axiom systems for 429
Set theory Gdel-Bernays 233
Set theory hierarchy of formulas in 220
Set theory Zermelo — Fraenkel 234 235
Shepherdson, J. C. 228 230 359 381
Shockley, J. E. 456 466
Shoenfield, J. 162 176 242 245 335 355 357 359 366 381 441 446
Sierpifiski, W. 32 43 48 84 134 449 450 452 466
Sikorski, R. 129 134 401 428
Silver, J. H. 5 6 8 28 48 177 178 180 187 245 319 383 389 390 391 394 395 407 409 427 428 445 446
Singular cardinal 358
Skolem's hypothesis 329
Skolem, T. 322 330
Sochor, A. 79 80 81
Solovay, R. 5 8 101 134 135 141 200 203 241 244 245 335 355 384 390 392 393 394 395 406 410 411 412 413 414 417 421 428
Sonner, Johann 234 240
Specker, E. 21 48 177 187
Spector, C. 331 337 343 347 350 353 354 355
Stable sets 268
Standard sets 85
Stark, H. M. 198
Steinhaus, H. 446
Stenius, Erik 321 323 325 330
Strongly normal class 315
Substitution function 88
Support 76
Sward, G. L. 429
Syntactic model 68
Szmielew, W. 449 466
T-absolute 144
T-definable 144
T-persistent 148
Takeuti, G. 144 155 157 158 176 277 278 280 319 430 438 439 439 440 446
Tarski, A. 20 36 48 158 176 177 178 187 205 206 212 214 215 216 218 392 395 397 400 428
Tharp, L. 332 355
Transfinite sequences 429
Transitive substructure 228
TREE 97 242
Tree finistic 97
Triangular matrix 47
Turing, A. M. 430 438
Two-cardinal conjecture 388
Ulam, S. M. 241 245 397 399 428
Ultraproduct 286
Union(s), axiom of 107 323
Universal 222
Universal-existential 222
Universe 234
Urelemente 447
V = L 101
Valuation function val 225
Variables of type 205
Vaught, R. L. 177 183 187 215 216 218 253 264 388 390
von Heijenoort, J. 247 264
Vopnka, P. 73 74 75 77 78 79 79 80 81 135 141
WAC 448
Wagner, K. 84 133
Wang, Hao 321 325 330
Winiewski, K. 449 466
Yoneda Lemma 237
Zermelo — Fraenkel axioms 321 323
Zermelo — Fraenkel set theory 234 235
Zermelo, E. 190 198
ZF 83
ZF axiom (s) of 106
ZFM 222 226
Zuckerman, M. M. 447 447 449 453 466
|
|
|
Реклама |
|
|
|