Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Robinson J.C. — Dimensions, Embeddings, and Attractors (Cambridge Tracts in Mathematics)
Robinson J.C. — Dimensions, Embeddings, and Attractors (Cambridge Tracts in Mathematics)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Dimensions, Embeddings, and Attractors (Cambridge Tracts in Mathematics)

Автор: Robinson J.C.

Аннотация:

The main purpose of this book is to bring together a number of results concerning the embedding of ‘finite-dimensional’ compact sets into Euclidean spaces, where an 'embedding' of a metric space (X, q) into Rn is to be understood as a homeomorphism from X onto its image. A secondary aim is to present, alongside such ‘abstract’ embedding theorems, more concrete embedding results for the finite-dimensional attractors that have been shown to exist in many infinite-dimensional dynamical systems.

In addition to its summary of embedding results, the book also gives a unified survey of four major definitions of dimension (Lebesgue covering dimension, Hausdorff dimension, upper box-counting dimension, and Assouad dimension). In particular, it provides a more sustained exposition of the properties of the box-counting dimension than can be found elsewhere; indeed, the abstract results for sets with finite box-counting dimension are those that are taken further in the second part of the book, which treats finite-dimensional attractors.

While the various measures of dimension discussed here find a natural application in the theory of fractals, this is not a book about fractals. An example to which we will return continually is an orthogonal sequence in an infinite-dimensional Hilbert space, which is very far from being a ‘fractal’. In particular, this class of examples can be used to show the sharpness of three of the embedding theorems that are proved here.


Язык: en

Статус предметного указателя: Неизвестно

Год издания: 2011

Количество страниц: 205

Добавлена в каталог: 30.11.2019

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2019
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте