Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Han J., Kamber M. — Data Mining: Concepts and Techniques
Han J., Kamber M. — Data Mining: Concepts and Techniques



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Data Mining: Concepts and Techniques

Авторы: Han J., Kamber M.

Аннотация:

Here's the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. Data Mining: Concepts and Techniques equips you with a sound understanding of data mining principles and teaches you proven methods for knowledge discovery in large corporate databases. Written expressly for database practitioners and professionals, this book begins with a conceptual introduction designed to get you up to speed. This is followed by a comprehensive and state-of-the-art coverage of data mining concepts and techniques. Each chapter functions as a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. Wherever possible, the authors raise and answer questions of utility, feasibility, optimization, and scalability, keeping your eye on the issues that will affect your project's results and your overall success. Data Mining: Concepts and Techniques is the master reference that practitioners and researchers have long been seeking. It is also the obvious choice for academic and professional classrooms. Classroom Features Available Online: - instructor's manual - course slides (in PowerPoint) - course supplementary readings - sample assignments and course projects * Offers a comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business data. * Organized as a series of stand-alone chapters so you can begin anywhere and immediately apply what you learn. * Presents dozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projects. * Provides in-depth, practical coverage of essential data mining topics, including OLAP and data warehousing, data preprocessing, concept description, association rules, classification and prediction, and cluster analysis. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields.


Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 561

Добавлена в каталог: 10.03.2018

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте