Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Aizenman M. — Communications In Mathematical Physics - Volume 277
Aizenman M. — Communications In Mathematical Physics - Volume 277



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Communications In Mathematical Physics - Volume 277

Автор: Aizenman M.

Аннотация:

In this paper we analyze the asymptotic dynamics of a system of N quantum
particles, in a weak coupling regime. Particles are assumed statistically independent at
the initial time.
Our approach follows the strategy introduced by the authors in a previous work
[BCEP1]: we compute the time evolution of the Wigner transform of the one-particle
reduced density matrix; it is represented by means of a perturbation series, whose expansion
is obtained upon iterating the Duhamel formula; this approach allows us to follow
the arguments developed by Lanford [L] for classical interacting particles evolving in a
low density regime.
We prove, under suitable assumptions on the interaction potential, that the complete
perturbation series converges term-by-term, for all times, towards the solution of
a Boltzmann equation.
The present paper completes the previous work [BCEP1]: it is proved there that a
subseries of the complete perturbation expansion converges uniformly, for short times,
towards the solution to the nonlinear quantum Boltzmann equation. This previous result
holds for (smooth) potentials having possibly non-zero mean value. The present text
establishes that the terms neglected at once in [BCEP1], on a purely heuristic basis,
indeed go term-by-term to zero along the weak coupling limit, at least for potentials
having zero mean.
Our analysis combines stationary phase arguments with considerations on the nature
of the various Feynman graphs entering the expansion.


Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2008

Количество страниц: 845

Добавлена в каталог: 06.01.2018

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте