Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hartman P. — Ordinary Differential Equations
Hartman P. — Ordinary Differential Equations



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Ordinary Differential Equations

Автор: Hartman P.

Аннотация:

This work was originally published in 1973, and appeared in a second edition in 1982 (Birkhauser), of which this is a reprint. Covering the basics of the theory of ordinary differential equations, discussion centers on the integration of differential inequalities but also describes techniques involving simple topological arguments, fixed point theorems, and functional analysis. The text assumes a familiarity with matrix theory and the ability to deal with functions of real variables. Hartman taught mathematics at Johns Hopkins University.


Язык: en

Рубрика: Математика/Анализ/Дифференциальные уравнения/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1964

Количество страниц: 612

Добавлена в каталог: 09.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Sturm, comparison theorems, majorant      334
Sturm, comparison theorems, separation theorem      335
Sturm, comparison theorems, Sturm — Liouville problems      337
Successive approximations      8 40 45 57 236 247 296(Ex.
Successive approximations, bracketing      42(Ex. 9.2) 43(Ex. 9.4)
Successive approximations, general theorem      404
Superposition principle      46 63 326
Topological arguments      203 278 520
Toroidal function      508(Ex. 2.6(a))
Torus      185
Torus, flow on      195
Total differential equations      117 120
Total differential equations, adjoint      119
Total differential equations, complete integrability      118 123 128
Trace (Tr)      46
Transversal      152 184 196
Tychonov fixed point theorem      405 414 425 444
Umlaufsatz      147
Uniqueness theorems      31 109
Uniqueness theorems, dth order equation      33(Ex. 6.6)
Uniqueness theorems, Kamke’s general theorem      31 33(Ex.
Uniqueness theorems, L-Lipschitz continuity      109
Uniqueness theorems, Nagumo      32
Uniqueness theorems, null solutions      211 212(Ex. 2.4)
Uniqueness theorems, one-sided      34 110
Uniqueness theorems, Osgood      33
Uniqueness theorems, Osgood, second order boundary value problems      420 421 423 425 427(Ex.
Uniqueness theorems, van Kampen      35
van der Pol equation      181 (Ex. 10.3)
van Kampen uniqueness theorem      35
van Kampen uniqueness theorem, application      113
Variation of constants      48 64
Variation of constants, second order equations      328 329
Variational principles      352 390 399
Wazewski theorem      280
Weber equation      320(Ex. 17.6) 382 529
Whittaker’s confluent form      509 (Ex. 2.6(d))
Wintner theorem on existence in large      29
Wirtinger inequality      346(Ex. 5.3(6))
Wronskian determinant      63 326
Zeros of solutions of second order equation, monotony      519 (Ex. 4.3)
Zeros of solutions of second order equation, monotony, number of      344 (see also “Disconjugate” “Nonoscillatory” “Oscillatory” “Sturm”)
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте