Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Forsyth A.R. — Theory of differential equations. Part 3. Ordinary linear equations (Vol. 4)
Forsyth A.R. — Theory of differential equations. Part 3. Ordinary linear equations (Vol. 4)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Theory of differential equations. Part 3. Ordinary linear equations (Vol. 4)

Автор: Forsyth A.R.

Язык: en

Рубрика: Математика/Анализ/Дифференциальные уравнения/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1902

Количество страниц: 534

Добавлена в каталог: 09.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Infinite determinants in general, may be capable of differentiation      359
Infinite determinants in general, properties of converging, in general      352 et seq.
Infinite determinants in general, uniform convergence of, when functions of a parameter      358
Infinite determinants in general, used to solve an unlimited number of linear equations      360
Initial conditions defined      4
Initial conditions defined, effect of, upon form of synectic integral      9.
Initial conditions defined, values      4
Integral curve      203 205.
Integrals rendered uniform functions of a variable, by means of Zetafuchsian functions      518 520.
Integrals rendered uniform functions of a variable, in general      510 et seq.
Integrals rendered uniform functions of a variable, when there are three singularities      509 510
Integrals rendered uniform functions of a variable, when there are two singularities      508
Integrals rendered uniform functions of a variable, when there is one singularity      506
Integrals, doubly-periodic, irregular, normal, regular, simply-periodic, subnormal, synectic      see under these titles respectively.
Integrals, irregular      see irregular integrals
Invariants of fundamental equation, connected with a period or periods      405 445
Invariants of fundamental equation, connected with singularity      38 40
Invariants of fundamental equation, for irregular integrals      398
Invariants of fundamental equation, when coefficients are algebraic      482.
Invariants, differential, for equations of the fourth order      201 213
Invariants, differential, for equations of the third order      195
Invariants, differential, Laguerre's      196.
Invariants, differential, Sehwarzian derivatives as, for equations of the second order      182
Irreconcileable paths, defined      23.
Irreducible equations, exist      347
Irreducible equations, Frobenius' method of constructing      248.
Irregular integrals, converge within an annulus      366
Irregular integrals, formal expression for, obtained by infinite determinants      376
Irregular integrals, groups and sub-groups of, obtained by generalisation of Frobenius' method      379
Irregular integrals, in the form of Laurent series      364
Irregular integrals, made uniform functions of a new variable by means of automorphic functions      see automorphic functions.
Irregular integrals, these constitute a fundamental system      387
JORDAN      197 200 333 334 338 341.
Juergens      65 113.
Klein      150 153 155 158 161 176 185 187 190 197 206 489 515 525.
Klein's normal form of equation of second order and Fuchsian type      158
Klein's normal form of equation of second order and Fuchsian type, method for equations of second order having algebraic integrals      176.
Kneser      341.
Kummer      146.
Kummer's group of integrals of the hypergeometric equation      144.
Lagrange      251.
Laguerre      196.
Lame's generalised equation      160.
Lamp's equation      1 126 159 160 165 168 338 448 464—473.
Laplace's definite integral, contour of      323
Laplace's definite integral, developed into normal integrals, where these exist      324 et seq.
Laplace's definite integral, satisfying equation with rational coefficients      318
Laurent series expressing an irregular integral      364
Laurent series expressing an irregular integral, proof of convergence within an annulus      366.
Legendre's equation      1 13 34 103 126 160 163.
Liapounoff      319 425—431.
Liapounoff's theorem, applied to evaluate Laplace's definite integral      324
Liapounoff's theorem, method of discussing uniform periodic integrals      425.
Lindemann      431 434 437.
Lindstedt      439.
Linear algebraic equations, infinite system of, solved by means of infinite determinants      360.
Linear differential equation, definition of      2.
Lineo-linear substitutions      see finite groups.
Logarithms, condition that some regular integral shall be free from      110.
Logarithms, identical relations, polynomial in powers of, cannot exist      69
Logarithms, quantity affected by, can satisfy a uniform linear differential equation and determine its fundamental system      66
Logarithms, regular integrals free from      106
Lommel      331.
Macdonald      333.
Markoff      169.
Member of a fundamental system      30.
Minors of infinite determinants      354.
Mittag — Leffler      399 463.
Modular function, Eisenstein's function similar to      525.
Modular function, used to render integrals of differential equations uniform in special case      510
Multiple root, group of integrals associated with      see multiple root.
Multiplier of periodic integral of second kind      410
Multiplier of periodic integral of second kind is a root of the fundamental equation of the period      406.
Muth      42.
Normal form of infinite determinant      350.
Normal form, (after Frobenius) of equation having some integrals regular      227
Normal form, (after Klein) of equation of Fuchsian type      158
Normal form, of component factors of such an equation, and of a composite equation      228
Normal integrals and the number of      280
Normal integrals of Hamburger's equation of order n      288 et seq.
Normal integrals, aggregate of, satisfy another differential equation      271
Normal integrals, are asymptotic representation of Laplace's integral      340.
Normal integrals, arising out of Laplace's definite integral      329
Normal integrals, belonging to equation of third order      304 308 309
Normal integrals, Cayley's method of obtaining      281
Normal integrals, conditions that Hamburger's equation of second order may have      279
Normal integrals, constructed by Thome's method      262 et seq.
Normal integrals, defined      262
Normal integrals, number of, belonging to equation of order n      295 298
Normal integrals, of equations with rational coefficients      313
Number of regular integrals of an equation and its characteristic index      230
Number of regular integrals of an equation and its characteristic index, and the number for the adjoint equation      257.
Number of regular integrals of an equation and its characteristic index, can be less than maximum value      233
Ordinary point, synectic integral in domain of      4.
Origin of infinite determinant      349
Origin of infinite determinant can be moved in the diagonal without changing the value of the determinant      350.
Osgood      85 122.
P-function, discussion of      see Riemami's P-function.
Painleve      195 198 199.
Papperitz      142.
Parabolic cylinder, equation of      165.
Paths, deformation of, without crossing singularity      22
Paths, effect of, round a singularity      Chapter n passim.
Paths, if reversed in continuation process, restore initial values      21
Paths, reconcileable, and irreconcileable      23
Pepin      206.
Period, fundamental equation for simple      405
Period, fundamental equations for double      445 see
Periodic coefficients, doubly      see doubly-periodic coefficients.
Periodic coefficients, equations having uniform      Chapter ix 403
Periodic coefficients, simply      see simply-periodic coefficients
Physics, equations of mathematical, and equations of Fuchsian type having five singularities      161.
Picard      vi 317 319 341 443 447 448 460 471.
Pochhammer      105 159 333 338.
Poincare      40 61 105 246 270 271 315 317 330 338 347 348 353 399 441 482 489
Poincare's theorem on aggregate of normal integrals of a given equation      271
Poincare's theorem on aggregate of normal integrals of a given equation, applications of automorphic functions to equations having algebraic coefficients      488 et seq.
Poincare's theorem on aggregate of normal integrals of a given equation, asymptotic expansions      338 et seq.
Poincare's theorem on aggregate of normal integrals of a given equation, development of Laplace's definite integral that satisfies equation with rational coefficients      318 et seq.
Poincare's theorem on aggregate of normal integrals of a given equation, theorem on the integration of linear equations by means of zetafuchsian functions      517 523.
Polygon, fundamental      see fundamental polygon.
Polyhedral functions, and finite groups      181
Polyhedral functions, associated with equations of second order having algebraic integrals      182
Polyhedral functions, used for construction of algebraic integral      185.
Polynomial integrals, equations having      166
Polynomial integrals, how far determinate      167.
Potential, equation for the, solved by means of Lame's equation      465.
Principal diagonal of infinite determinant      349.
Puiseux diagram used      267 269 274 285 300 310 311.
Quarter-period in elliptic functions, equation of      1 129 337 510.
Rank, equations of, greater than unity replaced by equations of rank unity      342 et seq.
Rank, of differential equation, defined      271
Rational coefficients, equations having      313 et seq.
Rational coefficients, Laplace's definite integral solution of      318.
Rational coefficients, normal integrals of      314
Rational integrals, equations having      169.
Real singularity      117
Real singularity, conditions for      119.
Reconcileable paths      23.
Reducibility of equations, defined      223
Reducibility of equations, extent of, when some integrals are regular      226 248
Reducibility of equations, if they possess normal or subnormal integrals      273.
Reducible, adjoint of a reducible equation is      253
Reducible, equation, having a reducible adjoint, is      254
Reducible, equations having regular integrals, are      224 226 248
Reducible, equations, having normal or subnormal integrals, are      273.
Regular integrals, conditions that all may be free from logarithms      106
Regular integrals, conditions that some may be free from logarithms      110
Regular integrals, construction of, by method of Frobenius      78
Regular integrals, denned      4 74
Regular integrals, equations having all integrals everywhere regular      Chapter iv see
Regular integrals, form of coefficients near a singularity if all integrals are      78
Regular, conditions that they exist      237
Regular, equations having no integrals      231 233
Regular, equations having some integrals, are reducible      224 226
Regular, equations when only some integrals are      Chapter vi
Regular, form of coefficients      221
Regular, how many integrals of adjoint equation are      257.
Regular, integrals possessed by an equation, number of      230
Regular, integrals, when they exist, constructed by method of Frobenius      235 et seq.
Resolvents, differential      49.
Riemann's P-function, definition of      136
Riemann's P-function, determines a differential equation      141 163 165
Riemann's P-function, forms of differential equation thus determined      143
Riemann's P-function, group of integrals deduced for hypergeometric equation      144.
Riemann's P-function, transformations of      137
Riemaun      137 140.
Roots of fundamental equation and of indicia! equation, how related      94.
Salmon      43.
Sauvage      42.
Schlesinger      vi 113 218.
Schwarz      492.
Scott, R.F.      41.
Second kind, equation with periodic coefficients has integrals which are      411 447
Second kind, number of such integrals      411 417 448 450 see doubly-periodic
Second kind, periodic functions of      410 447
Simply-periodic coefficients, analytical expression of these integrals      415.
Simply-periodic coefficients, equations having      403 et seq.
Simply-periodic coefficients, possess integrals which are periodic of second kind      411
Simply-periodic integrals of second kind      411
Simply-periodic integrals of second kind, their analytical expression      412.
Singularities of a differential equation      3
Singularities of a differential equation, how treated when coefficients are algebraic      490 et seq.
Singularities of a differential equation, real or apparent      117
Singularities of a differential equation, with conditions for discrimination      119
Singularity, effect of path round      36
Singularity, equation connected with, is invariantive      38.
Stieltjes      169 437.
Sub-groups of irregular integrals      see group of irregular integrals irregular
Sub-groups of periodic integrals, analytical expression of      419.
Sub-groups of periodic integrals, are analogous to Hamburger's sub-groups of regular integrals      417
Sub-groups of periodic integrals, determined by elementary divisors of the fundamental equation of the period      416
Sub-groups, can be fundamental system of an equation of lower order      72.
Sub-groups, general analytical form of      65
Sub-groups, Hamburger's      62
Sub-groups, in a group of integrals associated with multiple root of fundamental equation      57
Sub-groups, number of, is equal to number of elementary divisors of fundamental equation      62
Subnormal integrals, aggregate of, satisfy another equation      271
Subnormal integrals, Cayley's method of obtaining      284
Subnormal integrals, denned      270
Subnormal integrals, how constructed      270
Subnormal integrals, of Hamburger's equation of order n      299 et seq.
Subnormal integrals, of Hamburger's equation of second order      286
Subnormal integrals, of Hamburger's equation of third order      309 313.
Subsidiary equation for integration of any linear equation in terms of uniform functions, Fuehsian equations used as      517.
Substitutions, finite groups of lineo-linear substitutions      see finite groups.
Sylvester's eliminant used      46.
Synectic integral in domain of ordinary point      4
Synectic integral in domain of ordinary point is linear in initial values      9
Synectic integral in domain of ordinary point is unique as determined by initial conditions      8
Synectic integral in domain of ordinary point vanishes if all initial values vanish      9
Synectic integral in domain of ordinary point, continuation of      20.
Synectic integral in domain of ordinary point, modes of establishment of      10 11
System of functions, this property used to reduce an equation      see reducible equations.
System of functions, when linearly independent, can satisfy a linear differential equation of which they are a fundamental system      44
System of functions, when the coefficients in the equation are rational      45 223
System of integrals, determinant of      25
System of integrals, fundamental      see fundamental system.
Tannery      44 94 109 129 131 135.
Ternariants      see covariants.
Thetafuchsian functions used      520 et seq.
Third kind, equation having integrals which are      411.
Third kind, periodic functions of      410
Thome      74 221 231 232 233 234 257 259 262 483.
Thome's method of obtaining the determining factor of a normal integral      262 et seq.
Tisserand      431 441.
Transformation of equations of rank greater than unity to equations of rank unity      342 et seq.
Type, equations of Fuchsian      see Fuchsian type
Type, of equations, as associated with automorphio functions      516.
Uniform doubly-periodic integrals      459
Uniform doubly-periodic integrals, illustrated by Lame's equation      464 et seq.
Uniform doubly-periodic integrals, modes of constructing      460 468 471 475
Uniform functions, in general      510 et seq.
Uniform functions, integrals of equations expressible as, by means of automorphic functions      see automorphic functions
Uniform functions, Poineare's theorem on      518.
Uniform functions, simple examples of      506 508 509 510
Uniform simply-periodic integrals      421
Uniform simply-periodic integrals, Liapounoff's method of dealing with      425.
Valentiner      197.
van Yleck      169.
Vogt      399.
von Koch      348 359 398 399 482.
Weber      165 333.
Weierstrass      42 85 117 277.
wesentlich      117.
Whittaker      515.
Williamson      320.
Zetafuchsian functions      520
Zetafuchsian functions, most general expression of      523.
Zetafuchsian functions, properties of      521
Zetafuchsian functions, used to express the integral of any linear equation      522—524
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте