Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Barton C., Hsieh P. — Physical and Hydrologic-Flow Properties of Fractures: Las Vegas, Nevada-Zion Canyon, Utah-Grand Canyon, Arizona-Yucca Mountain, Nevada July 20-24, 1989
Barton C., Hsieh P. — Physical and Hydrologic-Flow Properties of Fractures: Las Vegas, Nevada-Zion Canyon, Utah-Grand Canyon, Arizona-Yucca Mountain, Nevada July 20-24, 1989



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Physical and Hydrologic-Flow Properties of Fractures: Las Vegas, Nevada-Zion Canyon, Utah-Grand Canyon, Arizona-Yucca Mountain, Nevada July 20-24, 1989

Авторы: Barton C., Hsieh P.

Аннотация:

About The Product

Published by the American Geophysical Union as part of the Field Trip Guidebooks Series.

Fractures are one of the most abundant structures in geology and are found in almost all rocks and soils at or near the Earth's surface. They are found over a wide range of length scales, from micro-fractures within mineral grams (micro-meters) to oceanic-intraplate fractures as much as 5000 km in length. The important role of fractures in fluid transport in the crust has long been recognized by geologists who have studied dikes (fracture conduits for flow of igneous rocks) and mineral veins fracture conduits for precipitation from aqueous Fluids). In studying these paleo-flow systems, little attention has been given to quantification of the flow properties of the system. Until two decades ago, hydrologists (Long, 1983) and petroleum-reservoir engineers (Nelson, 1985) studying fluid flow in rock had recognized the role of fractures only qualitatively. Quantitatively, the mathematics of fracture flow had been considered intractable while the mathematics of porous-media flow through the rock matrix had been developed and refined for almost one hundred ears. Direct observation of the flow properties of rock at field scales demonstrated the inadequacy of the porous media models beyond the scale of laboratory samples. The hydraulic conductivity of fractured bulk rock has been measured to be as much as 8 orders of magnitude greater than matrix hydraulic conductivity measured in laboratory samples of the same intact rock. Clearly, fractures are primary conduits for fluid flow in rock at time scales of economic and practical interest. Quantitative understanding of the physics of flow in individual fractures and fracture networks has become an important research topic with direct applications to contemporary and paleo flow systems.

Content:


Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1989

Количество страниц: 44

Добавлена в каталог: 18.06.2017

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте