Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Boucksom S., Eyssidieux P., Guedj V. — An Introduction to the K?hler-Ricci Flow
Boucksom S., Eyssidieux P., Guedj V. — An Introduction to the K?hler-Ricci Flow



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: An Introduction to the K?hler-Ricci Flow

Авторы: Boucksom S., Eyssidieux P., Guedj V.

Аннотация:

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the K?hler-Ricci flow and its current state-of-the-art. While several excellent books on K?hler-Einstein geometry are available, there have been no such works on the K?hler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research.

The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincar? conjecture. When specialized for K?hler manifolds, it becomes the K?hler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Amp?re equation).
As a spin-off of his breakthrough, G. Perelman proved the convergence of the K?hler-Ricci flow on K?hler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the K?hler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries


Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2013

Количество страниц: 333

Добавлена в каталог: 24.05.2017

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте