Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Stoltzfus N. — Unraveling the integral knot concordance group
Stoltzfus N. — Unraveling the integral knot concordance group



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Unraveling the integral knot concordance group

Автор: Stoltzfus N.

Аннотация:

The group of concordance classes of high dimensional homotopy spheres knotted in codimension two in the standard sphere has an intricate
algebraic structure which this paper unravels. The first level of
invariants is given by the classical Alexander polynomial. By means of
a transfer construction, the integral Seifert matrices of knots whose
Alexander polynomial is a power of a fixed irreducible polynomial are
related to forms with the appropriate Hermitian symmetry on torsion free
modules over an order in the algebraic number field determined by the
Alexander polynomial. This group is then explicitly computed in terms
of standard arithmetic invariants. In the symmetric case, this
computation shows there are no elements of order four with an irreducible
Alexander polynomial. Furthermore, the order is not necessarily Dedekind
fand non-projective modules can occur. The second level of invariants
[is given by constructing an exact sequence relating the global concordance
[group to the individual pieces described above. The integral knot
concordance group is then computed by a localization exact sequence
relating it to the rational group computed by J. Levine and a group of
[torsion linking forms.


Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1977

Количество страниц: 95

Добавлена в каталог: 13.05.2017

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте