Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Bontoux N., Dauphinot L., Potier M. — Unravelling single cell genomics : micro and nanotools
Bontoux N., Dauphinot L., Potier M. — Unravelling single cell genomics : micro and nanotools



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Unravelling single cell genomics : micro and nanotools

Àâòîðû: Bontoux N., Dauphinot L., Potier M.

Àííîòàöèÿ:

Content: Machine generated contents note: ch. 1 An Introduction to Molecular Biology / Luce Dauphinot — Abstract — 1.1. DNA Structure and Gene Expression — 1.2. Molecular Biology Tools for Nucleic Acid Studies — 1.2.1. DNA Engineering — 1.2.2. Polymerase Chain Reaction — 1.2.3. DNA Microarrays — References — ch. 2 The Central Dogma in Molecular Biology / Laili Mahmoudian — Abstract — 2.1. Replication — 2.2. Transcription — 2.3. Translation — 2.4. Regulation of Gene Expression — 2.4.1. Transcriptional Control — 2.4.2. Post-transcriptional Modifications — 2.4.3. Translational Control — 2.4.4. Post-translational Control — 2.5. Limitations of the Central Dogma — 2.6. Single Cells and their Complexity — References — ch. 3 From Unicellular to Multicellular Organisms: Tells from Evolution and from Development / Tania Vitalis — Abstract — 3.1. Cells from Evolution — 3.2. Cells from Development — References — ch. 4 Understanding Cellular Differentiation / Tania Vitalis — Abstract 4.1. Development of the Cerebral Cortex — 4.2. Neuronal Differentiation — 4.3. Single Cell Analysis in Differentiation Processes — References — ch. 5 Realistic Models of Neurons Require Quantitative Information at the Single-cell Level / Nicolas Le Novere — Abstract — 5.1. Introduction — 5.2. The Importance of Precise Neuronal Morphology — 5.3. Each Neuron has a Unique Neurochemistry — 5.4. Conclusions — References — ch. 6 Application to Cancerogenesis: Towards Targeted Cancer Therapies? / Christoph A. Klein — Abstract — 6.1. Molecular Diagnosis in Cancer — 6.2. Detection and Malignant Origin of Disseminated Cancer Cells — 6.3. Genomic Studies of Single Disseminated Cancer Cells — 6.4. Oncogene Dependence and Tumor Suppressor Sensitivity in Metastasis Founder Cells — References — ch. 7 Capturing a Single Cell / Joel Lachuer — Abstract — 7.1. Introduction — 7.2. Overview of Cell Sorting Technologies — 7.3. Laser Capture Microdissection Technologies — 7.3.1. Infrared Laser Capture Systems — 7.3.2. Ultraviolet Cutting Systems 7.4. Protocols Before Laser Microdissection (Tissue Sampling and Preparation) — 7.4.1. Dissection from Fresh Frozen Tissue — 7.4.2. Dissection from Formalin-fixed Paraffin-embedded Tissue — 7.4.3. Immuno Laser Capture Microdissection — 7.4.4. Other Cell-labeling Methods — 7.5. Conclusion — References — ch. 8 Looking at the DNA of a Single Cell / Christoph A. Klein — Abstract — 8.1. Challenges of Single Cell DNA Amplification — 8.2. Methods for Amplifying Genomic DNA of Single Cells — 8.3. Array Comparative Genomic Hybridization of Single Cells — 8.4. Combined Genome and Transcriptome Analysis of Single Cells — 8.5. Perspective on Single Cell DNA Analysis — References — ch. 9 Gene Analysis of Single Cells / Bertrand Lambolez — Abstract — 9.1. Single Cell RT-PCR After Patch Clamp — 9.2. Correlating mRNA Expression and Functional Properties of Single Cells — 9.3. Quantitative Analyses by scPCR — 9.4. Molecular and Functional Phenotyping of Neuronal Types — 9.5. Patch-clamp Harvesting of Single Cells 9.6. Sensitivity Limits — 9.7. Controls — 9.8. Interpretation of scPCR Results — Conclusion — Acknowledgement — References — ch. 10 Proteomics / Joelle Vinh — Abstract — 10.1. Motivation to Study Proteins at the Single Cell Level — 10.1.1. Proteins, mRNAs and DNA — 10.1.2. Sample Preparation — 10.1.3. Sub-proteome Analysis — 10.2. Analytical Strategies — 10.2.1. Mass Spectrometry — 10.2.2. Coupling Separation Techniques and Mass Spectrometry — 10.3. Strategies for Studying Proteins in Low Amounts of Samples — 10.3.1. How to Enhance the Sensitivity: Miniaturization, Integration, and Automation — 10.3.2. MALDI Interfaces — Conclusion — References — ch. 11 Microfluidics: Basic Concepts and Microchip Fabrication / Petra S. Dittrich — Abstract — 11.1. Size Matters: An Introduction — 11.2. A Short Chronology of Microfluidics Research — 11.3. Microfluidics: Some Basics — 11.3.1. Flow Generation — 11.3.2. Laminar Flow — 11.3.3. Digital Microfluidics: Segmented Flow — 11.4. Fabrication Techniques and Materials 11.4.1. Photolithography — 11.4.2. Soft Lithography — 11.4.3. Microchip Materials — 11.4.4. From Fabrication to Application — 11.5. Concluding Remarks — References — ch. 12 Cell Capture and Lysis on a Chip / Albert van den Berg — Abstract — 12.1. Introduction — 12.2. Cell Capture on a Chip — 12.2.1. Mechanical Trapping — 12.2.2. Electrical Trapping — 12.2.3. Fluidic Trapping — 12.2.4. Alternative Trapping Techniques — 12.2.5. Conclusion on Cell Trapping — 12.3. Cell Lysis in a Chip — 12.3.1. Thermal Lysis — 12.3.2. Chemical Lysis — 12.3.3. "Alkaline" or Electrochemical Lysis — 12.3.4. Electrical Lysis — 12.3.5. Mechanical Lysis — 12.3.6. Alternative Mechanical Lysis: Acoustic Lysis — 12.3.7. Optical Lysis — 12.3.8. Conclusion on Cell Lysis — 12.4. Conclusion — References — ch. 13 DNA Analysis in Microfluidic Devices and their Application to Single Cell Analysis / Angelique Le Bras — Abstract — 13.1. Amplification on a Chip — 13.1.1. Polymerase Chain Reaction — 13.1.2. Isothermal Techniques 13.2. DNA Analysis — 13.2.1. Real-time PCR Detection — 13.2.2. Capillary Electrophoresis — 13.3. Why and When Smaller is Better — 13.4. Applications of Microfluidic Single Cell Genetic Analysis in Microbial Ecology — 13.5. Conclusion — References — ch. 14 Gene Expression Analysis on Microchips / Max Chahert — Abstract — 14.1. Introduction — 14.2. Multi-step Microfluidic RT-PCR — 14.3. One-step Microfluidic RNA Analysis — 14.4. Microfluidic cDNA Analysis — 14.5. Single Cell RNA Analysis — 14.6. Conclusion — Acknowledgement — References — ch. 15 Analysis of Proteins at the Single Cell Level / Severine Le Gac — Abstract — 15.1. Introduction — 15.1.1. Protein Analysis: The Challenge — 15.1.2. Why Microfluidics? — 15.1.3. Microfluidics and Protein Analysis — 15.2. Electrospray Ionization Mass Spectrometry — 15.2.1. Connections and Coupling — 15.2.2. Sample Processing: Purification and Digestion — 15.2.3. Integrated Systems — 15.3. MALDI-MS — 15.3.1. Microfabricated MALDI Targets 15.3.2. Off-line Sample Preparation — 15.3.3. Integrated Microsystems — 15.4. Innovative Approaches for Protein Analysis at the Single Cell Level — 15.4.1. Invasive Analysis — 15.4.2. Partially Invasive Analysis — 15.4.3. Non-invasive Analysis — 15.5. Conclusion and Perspectives — References — ch. 16 A Concrete Case: A Microfluidic Device for Single Cell Whole Transcriptome Analysis / Marie-Claude Potier — Abstract — 16.1. Introduction — 16.2. Choice of Biological Protocol, Material and Fabrication Technique — 16.2.1. Protocols for Single Cell Whole Transcriptome Analysis — 16.2.2. Miniaturizing Reactions: Continuous Flows, Reaction Chambers or Droplet Micro-fluidic Reactions — 16.2.3. Choosing the Microchip Material — 16.2.4. Microchip Fabrication — 16.3. Integrating Reverse Transcription on a Chip — 16.3.1. Gene Expression Profiling of Single-Cell Scale Amounts of RNA — 16.3.2. Gene Expression Profiling of Single Cells — 16.4. Amplifying the Transcriptome on a Chip — 16.5. Detecting the Transcriptome on a Chip 16.5.1. Microfluidics and Conventional Microarrays — 16.5.2. Microarray Development Using DNA Immobilization onto Microchannels — 16.5.3. Towards Transcriptome Analysis in the Liquid Phase — 16.6. Some Practical Conclusions — References — ch. 17 Tiny Droplets for High-throughput Cell-based Assays / V. Taly — Abstract — 17.1. Introduction — 17.2. Droplet-based Microfluidics — 17.2.1. EWOD and "Digital Microfluidics": Tools for High-content Screening — 17.2.2. Droplet-based Microfluidics: Tools for High-throughput Screening — 17.3. Generating and Manipulating Droplets — 17.3.1. Droplet Production — 17.3.2. Droplet Division — 17.3.3. Droplet Flow, Droplet Synchronization, and Droplet Incubation — 17.3.4. Droplet Content Detection and Droplet Sorting — 17.4. In Vitro Compartmentalization of Biological Reactions — 17.4.1. Cell Compartmentalization in Aqueous Droplets — 17.4.2. Incubation and Cell Viability in Droplets — 17.4.3. Cell-based Assays and Cell Manipulation — 17.5. Towards Integrated Platforms for Cell-based Assays 17.6. Conclusions — References — ch. 18 New Detection Methods for Single Cells / Emmanuel Fort — Abstract — 18.1. Introduction — 18.2. Bio-barcode Strategy — 18.2.1. Principle — 18.2.2. An Example: DNA Origami — 18.3. Imaging Gene Expression in Living Cells — 18.3.1. Motivations — 18.3.2. Improvements in Photonic Microscopy — 18.3.3. Improvements in Fluorophore Design — 18.4. Quantum Dots-based Techniques — 18.4.1. Quantum Dots Bead-based Assays — 18.4.2. Single Quantum Dots-based DNA Nanosensors — 18.4.3. Quantum Dots for Super-resolution Microscopy — 18.5. Gold Nanoparticle-based Detection Methods — 18.5.1. Resonant Light Scattering Detection — 18.5.2. Molecular Beacons with Gold Nanoparticles — 18.5.3. Molecular Plasmonic Rulers — 18.5.4. Surface-enhanced Raman Scattering Detection — 18.6. Electrochemical Sensors — 18.7. Concluding Remarks — References


ßçûê: en

Ðóáðèêà: Ðàçíîå/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Íåèçâåñòíî

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2010

Êîëè÷åñòâî ñòðàíèö: 318

Äîáàâëåíà â êàòàëîã: 15.04.2017

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå