Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Gaussier E., Yvon F. — Textual Information Access: Statistical Models
Gaussier E., Yvon F. — Textual Information Access: Statistical Models

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Textual Information Access: Statistical Models

Авторы: Gaussier E., Yvon F.

Аннотация:

This book presents statistical models that have recently been developed within several research communities to access information contained in text collections. The problems considered are linked to applications aiming at facilitating information access:
- information extraction and retrieval;
- text classification and clustering;
- opinion mining;
- comprehension aids (automatic summarization, machine translation, visualization).
In order to give the reader as complete a description as possible, the focus is placed on the probability models used in the applications concerned, by highlighting the relationship between models and applications and by illustrating the behavior of each model on real collections.
Textual Information Access is organized around four themes: informational retrieval and ranking models, classification and clustering (regression logistics, kernel methods, Markov fields, etc.), multilingualism and machine translation, and emerging applications such as information exploration.

Contents

Part 1: Information Retrieval
1. Probabilistic Models for Information Retrieval, Stephane Clinchant and Eric Gaussier.
2. Learnable Ranking Models for Automatic Text Summarization and Information Retrieval, Massih-Reza Amini, David Buffoni, Patrick Gallinari,
 Tuong Vinh Truong and Nicolas Usunier.
Part 2: Classification and Clustering
3. Logistic Regression and Text Classification, Sujeevan Aseervatham, Eric Gaussier, Anestis Antoniadis,
 Michel Burlet and Yves Denneulin.
4. Kernel Methods for Textual Information Access, Jean-Michel Renders.
5. Topic-Based Generative Models for Text 
Information Access, Jean-Cedric Chappelier.
6. Conditional Random Fields for Information Extraction, Isabelle Tellier and Marc Tommasi.
Part 3: Multilingualism
7. Statistical Methods for Machine Translation, Alexandre Allauzen and Francois Yvon.
Part 4: Emerging Applications
8. Information Mining: Methods and Interfaces for Accessing Complex Information, Josiane Mothe, Kurt Englmeier and Fionn Murtagh.
9. Opinion Detection as a Topic Classification Problem, Juan-Manuel Torres-Moreno, Marc El-Beze, Patrice Bellot and
 Frederic Bechet.

Content:
Chapter 1 Probabilistic Models for Information Retrieval (pages 1–32):
Chapter 2 Learnable Ranking Models for Automatic Text Summarization and Information Retrieval (pages 33–58):
Chapter 3 Logistic Regression and Text Classification (pages 59–84):
Chapter 4 Kernel Methods for Textual Information Access (pages 85–127):
Chapter 5 Topic?based Generative Models for Text Information Access (pages 129–177):
Chapter 6 Conditional Random Fields for Information Extraction (pages 179–219):
Chapter 7 Statistical Methods for Machine Translation (pages 221–303):
Chapter 8 Information Mining (pages 305–336):
Chapter 9 Opinion Detection as a Topic Classification Problem (pages 337–368):


Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2012

Количество страниц: 436

Добавлена в каталог: 10.04.2017

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2019
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте