Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ted A. Burton Ph.D. Professor Emeritus of Southern Ill — Volterra integral and differential equations
Ted A. Burton Ph.D.  Professor Emeritus of Southern Ill — Volterra integral and differential equations



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Volterra integral and differential equations

Автор: Ted A. Burton Ph.D. Professor Emeritus of Southern Ill

Аннотация:

Most mathematicians, engineers, and many other scientists are well-acquainted with theory and application of ordinary differential equations. This book seeks to present Volterra integral and functional differential equations in that same framwork, allowing the readers to parlay their knowledge of ordinary differential equations into theory and application of the more general problems. Thus, the presentation starts slowly with very familiar concepts and shows how these are generalized in a natural way to problems involving a memory. Liapunov's direct method is gently introduced and applied to many particular examples in ordinary differential equations, Volterra integro-differential equations, and functional differential equations.

By Chapter 7 the momentum has built until we are looking at problems on the frontier. Chapter 7 is entirely new, dealing with fundamental problems of the resolvent, Floquet theory, and total stability. Chapter 8 presents a solid foundation for the theory of functional differential equations. Many recent results on stability and periodic solutions of functional differential equations are given and unsolved problems are stated.

Key Features:

- Smooth transition from ordinary differential equations to integral and functional differential equations. - Unification of the theories, methods, and applications of ordinary and functional differential equations. - Large collection of examples of Liapunov functions. - Description of the history of stability theory leading up to unsolved problems. - Applications of the resolvent to stability and periodic problems. 1. Smooth transition from ordinary differential equations to integral and functional differential equations. 2. Unification of the theories, methods, and applications of ordinary and functional differential equations. 3. Large collection of examples of Liapunov functions. 4. Description of the history of stability theory leading up to unsolved problems. 5. Applications of the resolvent to stability and periodic problems.



Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Издание: 2nd

Год издания: 2005

Количество страниц: 367

Добавлена в каталог: 24.02.2017

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте