Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Griewank A. — Evaluating derivatives: principles and techniques of algorithmic differentiation
Griewank A. — Evaluating derivatives: principles and techniques of algorithmic differentiation



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Evaluating derivatives: principles and techniques of algorithmic differentiation

Автор: Griewank A.

Аннотация:

Algorithmic, or automatic, differentiation (AD) is concerned with the accurate and efficient evaluation of derivatives for functions defined by computer programs. No truncation errors are incurred, and the resulting numerical derivative values can be used for all scientific computations that are based on linear, quadratic, or even higher order approximations to nonlinear scalar or vector functions. In particular, AD has been applied to optimization, parameter identification, equation solving, the numerical integration of differential equations, and combinations thereof. Apart from quantifying sensitivities numerically, AD techniques can also provide structural information, e.g., sparsity pattern and generic rank of Jacobian matrices.

This first comprehensive treatment of AD describes all chainrule-based techniques for evaluating derivatives of composite functions with particular emphasis on the reverse, or adjoint, mode. The corresponding complexity analysis shows that gradients are always relatively cheap, while the cost of evaluating Jacobian and Hessian matrices is found to be strongly dependent on problem structure and its efficient exploitation. Attempts to minimize operations count and/or memory requirement lead to hard combinatorial optimization problems in the case of Jacobians and a well-defined trade-off curve between spatial and temporal complexity for gradient evaluations.

The book is divided into three parts: a stand-alone introduction to the fundamentals of AD and its software, a thorough treatment of methods for sparse problems, and final chapters on higher derivatives, nonsmooth problems, and program reversal schedules. Each of the chapters concludes with examples and exercises suitable for students with a basic understanding of differential calculus, procedural programming, and numerical linear algebra.



Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2000

Количество страниц: 394

Добавлена в каталог: 18.12.2016

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте