Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bockle G., Pink R. — Cohomological Theory of Crystals over Function Fields
Bockle G., Pink R. — Cohomological Theory of Crystals over Function Fields



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Cohomological Theory of Crystals over Function Fields

Авторы: Bockle G., Pink R.

Аннотация:

This book develops a new cohomological theory for schemes in positive characteristic $p$ and it applies this theory to give a purely algebraic proof of a conjecture of Goss on the rationality of certain $L$-functions arising in the arithmetic of function fields. These $L$-functions are power series over a certain ring $A$, associated to any family of Drinfeld $A$-modules or, more generally, of $A$-motives on a variety of finite type over the finite field $\mathbb{F}_p$. By analogy to the Weil conjecture, Goss conjectured that these $L$-functions are in fact rational functions. In 1996 Taguchi and Wan gave a first proof of Goss's conjecture by analytic methods a la Dwork. The present text introduces $A$-crystals, which can be viewed as generalizations of families of $A$-motives, and studies their cohomology. While $A$-crystals are defined in terms of coherent sheaves together with a Frobenius map, in many ways they actually behave like constructible etale sheaves. A central result is a Lefschetz trace formula for $L$-functions of $A$-crystals, from which the rationality of these $L$-functions is immediate. Beyond its application to Goss's $L$-functions, the theory of $A$-crystals is closely related to the work of Emerton and Kisin on unit root $F$-crystals, and it is essential in an Eichler - Shimura type isomorphism for Drinfeld modular forms as constructed by the first author. The book is intended for researchers and advanced graduate students interested in the arithmetic of function fields and/or cohomology theories for varieties in positive characteristic. It assumes a good working knowledge in algebraic geometry as well as familiarity with homological algebra and derived categories, as provided by standard textbooks. Beyond that the presentation is largely self contained.


Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2009

Количество страниц: 195

Добавлена в каталог: 11.12.2016

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте