Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Fusion Plasma Physics
Автор: Stacey W.
Аннотация:
This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics - basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. - are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research - fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral atom recycling and transport, impurity ion transport, the physics of the plasma edge (diffusive and non-diffusive transport, MARFEs, ELMs, the L-H transition, thermal-radiative instabilities, shear suppression of transport, velocity spin-up), etc. - are comprehensively developed and related to the experimental evidence. Operational limits on the performance of future fusion reactors are developed from plasma physics and engineering constraints, and conceptual designs of future fusion power reactors are discussed.
There have been significant developments in magnetic fusion plasma physics (and supporting technology) since the first edition of this book was published almost seven years ago. The formation of the ITER project, in which Europe, Japan, Russia, the USA, China, India and South Korea are collaborating on the construction and subsequent operation in the 2020s of the first experimental fusion power reactor, has done much to focus the world’s fusion research efforts on resolving the resolvable physics issues that remain for this perhaps penultimate step on the path to fusion power. This focused attention has stimulated substantial progress in better understanding the physics of burning plasmas, the transport of particles and energy from the central plasma core to the edge, the physics of the edge plasma where the interaction with the surrounding material wall takes place, and other areas important to the success of ITER.
It is the intention of this second edition to incorporate these advances in understanding of tokamak plasma physics into a comprehensive textbook and reference on the state-of the-art in fusion plasma physics. Major additions have been made to the sections on the physics of the plasma edge, on the divertor, on the recycling of neutral atoms to refuel the plasma, on the physics models for the transport of energy and particles from the plasma core into and across the plasma edge, on the evolving first-principles physics calculations of the turbulent processes thought to govern transport of energy from the core and on several other physics issues important to ITER. Other sections containing material that has been supplanted or found to be not as relevant as the newer material have been reduced or eliminated.
As with the 1st edition, this 2nd edition is intended as a textbook for advanced undergraduate and graduate students in physics, nuclear engineering and other disciplines offering courses in fusion plasma physics. It is also intended as a reference for practicing physicists and engineers in the field of fusion plasma physics, and as a combination textbook and reference for those who are entering that field. The book should be accessible to anyone with the background in math and physics of a university senior in physics or a physics-based branch of engineering. The material was developed for graduate courses in nuclear engineering at Georgia Tech (an asterisk denotes the material that we defer until the second graduate course), but the first graduate course is routinely taken by a few
seniors.