Электронная библиотека Попечительского советамеханико-математического факультета Московского государственного университета
 Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум
 Авторизация Поиск по указателям
Vein R., Dale P. — Determinants and Their Applications in Mathematical Physics (Applied Mathematical Sciences)

 Читать книгубесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме

Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter

Название: Determinants and Their Applications in Mathematical Physics (Applied Mathematical Sciences)

Авторы: Vein R., Dale P.

Аннотация:

This book, as usual by the excellent Springer publishers, continues the trend launched by the Clifford algebra people (Lounesto, Chisholm, Baylis, Pezzaglia, Okubo, Benn, etc. - see reviews of some of them), namely, to SIMPLIFY the mathematics of physics by using appropriate ALGEBRAIC techniques rather than geometry or calculus or other techniques. Both this book by Vein and Dale and the Clifford algebra books and papers use algebra in physics largely to replace hard to manipulate geometry and unwieldly matrices. A matrix is an algebraic quantity, but it is very hard to handle: it is essentially a table of numbers, for example a table of people's heights, or people's heights by weights. You add tables by adding corresponding positions in each table, and likewise for subtracting, while multiplication is much more complicated. However, as Vein and Dale show, you can replace many results in physics which involve matrices by DETERMINANTS. A determinant is a single number, typically, which is gotten by combining the numbers of the matrix table in a certain way given by a formula. Thus, replacing a matrix by a determinant means replacing a table by a single number. It turns out that the Einstein Equation(s) of general relativity can be solved in this way (for the axially symmetric field), and likewise for equations involving solitary waves (Kadomtsev-Petashvili equation), waves in a rotating fluid (Benjamin-Ono equation), etc. An important tool in this process is Backlund transformations, which are described in the appendix but are more thoroughly described in the 1989 book of Bluman and Kumei which (together with their journal publications) initiated much of the simplification of differential equations of the modern era. That book, as you may guess, was also published by Springer/Springer-Verlag.

Язык:

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 391

Добавлена в каталог: 14.08.2016

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Реклама
 © Электронная библиотека попечительского совета мехмата МГУ, 2004-2018 | | О проекте