Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Williams-Watts Dielectric Relaxation: A Fractal Time Stochastic Process
Автор: Shlesinger M.
Аннотация:
Dielectric relaxation in amorphous materials is treated in a defect-diffusion model where relaxation occurs when a mobile defect, such as a vacancy, reaches a frozen-in dipole. The random motion of the defect is assumed to be governed by a fractal time stochastic process where the mean duration between defect movements is infinite. When there are many more defects than dipoles, the Williams-Watts decaying fractional exponential relaxation law is derived. The argument of the exponential is related to the number of distinct sites visited by the random walk of the defect. For the same reaction dynamics but with more traps than walkers, an algebraically decaying relaxation is found.