Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Nesterov I., Nemirovskii A., Nesterov Y. — Interior-Point Polynomial Algorithms in Convex Programming
Nesterov I., Nemirovskii A., Nesterov Y. — Interior-Point Polynomial Algorithms in Convex Programming



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Interior-Point Polynomial Algorithms in Convex Programming

Авторы: Nesterov I., Nemirovskii A., Nesterov Y.

Аннотация:

Written for specialists working in optimization, mathematical programming, or control theory. The general theory of path-following and potential reduction interior point polynomial time methods, interior point methods, interior point methods for linear and quadratic programming, polynomial time methods for nonlinear convex programming, efficient computation methods for control problems and variational inequalities, and acceleration of path-following methods are covered. In this book, the authors describe the first unified theory of polynomial-time interior-point methods. Their approach provides a simple and elegant framework in which all known polynomial-time interior-point methods can be explained and analyzed; this approach yields polynomial-time interior-point methods for a wide variety of problems beyond the traditional linear and quadratic programs.

The book contains new and important results in the general theory of convex programming, e.g., their "conic" problem formulation in which duality theory is completely symmetric. For each algorithm described, the authors carefully derive precise bounds on the computational effort required to solve a given family of problems to a given precision. In several cases they obtain better problem complexity estimates than were previously known. Several of the new algorithms described in this book, e.g., the projective method, have been implemented, tested on "real world" problems, and found to be extremely efficient in practice.

Special Features o the developed theory of polynomial methods covers all approaches known so far o presents detailed descriptions of algorithms for many important classes of nonlinear problems

Audience Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.

Contents Chapter 1: Self-Concordant Functions and Newton Method; Chapter 2: Path-Following Interior-Point Methods; Chapter 3: Potential Reduction Interior-Point Methods; Chapter 4: How to Construct Self-Concordant Barriers; Chapter 5: Applications in Convex Optimization; Chapter 6: Variational Inequalities with Monotone Operators; Chapter 7: Acceleration for Linear and Linearly Constrained Quadratic Problems; Bibliography; Appendix 1; Appendix 2.



Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 405

Добавлена в каталог: 08.06.2016

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте