Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Gromov M., LaFontaine J., Pansu P. — Metric Structures for Riemannian and Non-Riemannian Spaces
Gromov M., LaFontaine J., Pansu P. — Metric Structures for Riemannian and Non-Riemannian Spaces

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Metric Structures for Riemannian and Non-Riemannian Spaces

Авторы: Gromov M., LaFontaine J., Pansu P.

Аннотация:

Based on "Structures Mtriques des Varites Riemanninnes", edited by J. LaFontaine & P. Pansu.

Metric theory has undergone a dramatic phase transition in the last decades when its focus moved from the foundations of real analysis to Riemannian geometry and algebraic topology, to the theory of infinite groups and probability theory. The new wave began with seminal papers by Svarc and Milnor on growth of groups and the spectacular proof of the rigidity of lattices by Mostow. This was followed by the creation of the asymptotic metric theory of infinite groups by Gromov.

The structural metric approach to the Riemannian category, tracing back to Cheegers thesis, pivots around the notion of the Gromov-Hausdorff distance between Riemannian manifolds. This distance organizes Riemannian manifolds of all possible topological types into a single connected moduli space, where convergence allows the collapse of dimension with unexpectedly rich geometry, as revealed in the work of Cheeger, Fukaya, Gromov and Perelman. Also, Gromov found metric structure within homotopy theory and thus introduced new invariants controlling combinatorial complexity of maps and spaces, such as the simplicial volume, which is responsible for degrees of maps between manifolds. During the same period, Banach spaces and probability theory underwent a geometric metamorphosis, stimulated by the Levy-Milman concentration phenomenon, encompassing the law of large numbers for metric spaces with measures and dimensions going to infinity.

The first stages of the new developments were presented in a course delivered by Gromov in Paris, and turned into the famous 1979 Green Book by LaFontaine and Pansu. The present English translation of that work has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices — by Gromov on Levys inequality, by Pansu on quasiconvex domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures — as well as an extensive bibliography and index round out this unique and beautiful book.



Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 593

Добавлена в каталог: 05.05.2016

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте