The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed.
The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathematical justification of these methods. The latter implies a priori estimates of solutions of differential equations; this involves the application of Gronwall's lemma, maximum principles, energy integrals, fixed point theorems and G?ding's theorem for general elliptic equations. These features make the book of value to mathematicians and researchers in the engineering sciences, interested in the mathematical justification of formal approximations of solutions of practical perturbation problems. The text is selfcontained and each chapter is concluded with some exercises.