Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Quiinonero-Candela J., Sugiyama M., Schwaighofer A. — Dataset Shift in Machine Learning
Quiinonero-Candela J., Sugiyama M., Schwaighofer A. — Dataset Shift in Machine Learning



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Dataset Shift in Machine Learning

Авторы: Quiinonero-Candela J., Sugiyama M., Schwaighofer A.

Аннотация:

Dataset shift is a common problem in predictive modeling that occurs when the joint distribution of inputs and outputs differs between training and test stages. Covariate shift, a particular case of dataset shift, occurs when only the input distribution changes. Dataset shift is present in most practical applications, for reasons ranging from the bias introduced by experimental design to the irreproducibility of the testing conditions at training time. (An example is -email spam filtering, which may fail to recognize spam that differs in form from the spam the automatic filter has been built on.) Despite this, and despite the attention given to the apparently similar problems of semi-supervised learning and active learning, dataset shift has received relatively little attention in the machine learning community until recently. This volume offers an overview of current efforts to deal with dataset and covariate shift. The chapters offer a mathematical and philosophical introduction to the problem, place dataset shift in relationship to transfer learning, transduction, local learning, active learning, and semi-supervised learning, provide theoretical views of dataset and covariate shift (including decision theoretic and Bayesian perspectives), and present algorithms for covariate shift. Contributors : Shai Ben-David, Steffen Bickel, Karsten Borgwardt, Michael Br?ckner, David Corfield, Amir Globerson, Arthur Gretton, Lars Kai Hansen, Matthias Hein, Jiayuan Huang, Takafumi Kanamori, Klaus-Robert M?ller, Sam Roweis, Neil Rubens, Tobias Scheffer, Marcel Schmittfull, Bernhard Sch?lkopf, Hidetoshi Shimodaira, Alex Smola, Amos Storkey, Masashi Sugiyama, Choon Hui Teo Neural Information Processing series


Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2009

Количество страниц: 246

Добавлена в каталог: 18.09.2015

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте