Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Об основаниях геометрии: Сборник классических работ по геометрии Лобачевского и развитию ее идей
Автор: Норден А.П.
Аннотация:
К столетию со дня смерти Лобачевского ГИТТЛ выпустило в свет сборник под названием "Об основаниях геометрии" значительно расширенный по сравнению с изданием, выпущенном в 1893 к столетнему юбилею со дня рождения Лобачевского. В сборник включено 22 классические работы по геометрии Лобачевского и развитию ее идей. Эти работы сгруппированы по трем отделам.
Первый отдел - работы самого Лобачевского, Яноша Больаи и Гаусса по неевклидовой геометрии.
Второй отдел - основы теории поверхностей и интерпретации геометрии Лобачевского. Он начинается работами по теории поверхностей - основным мемуаром Гаусса и четырьмя статьями Миндинга (о внутренней геометрии поверхностей). За ними следует работа Бельтрами, помещенная в казанском издании "Об основаниях гео метрии", содержащая первую интерпретацию геометрии Лобачевского; эта работа дополнена статьей Гильберта о поверхностях постоянной кривизны. Отдел заканчивается известными работами Кэли и Клейна о проективном мероопределении и проективной интерпретации неевклидовой геометрии и работой Пуанкаре о ее конформной интерпретации.
Последний отдел развитие идей геометрии Лобачевского начинается известными работами Римана, Бельтрами, Гельмгольца, Ли и Пуанкаре об основаниях геометрии, которые были помещены в казанском издании сборника; мемуар Римана дополнен комментариями Вейля. За ними следует знаменитая "Эрлангенская программа" Клейна. Сборник не отвечал бы своему назначению, если бы в нем не были отражены групповой и аксиоматический методы обоснования геометрии, но все работы этих направлений например, "Theorie der Transformationsgruppen" Софуса Ли, "Grundlagen der Geometrie" Гильберта и "Основания геометрии" Кагана велики, а делать из них извлечения невозможно без нарушения цельности работ. Пришлось в этих случаях сделать исключения и поместить вместо подлинников отзывы Клейна и Пуанкаре о работах Ли и Гильберта, а также краткое изложение аксиоматической системы В. Ф. Кагана из его статьи "Теоретические основания математики". Отдел заканчивается замечательной работой Картана "Теория групп и геометрия", в которой на основе синтеза идей Клейна и Римана характеризуется новое направление в геометрии.