Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2)
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Abstract Harmonic Analysis (Vol. 2)

Авторы: Hewitt E., Ross K.A.

Язык: en

Рубрика: Математика/Анализ/Продвинутый анализ/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1970

Количество страниц: 771

Добавлена в каталог: 02.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$K_0$-set      552
$K_a$-set      552
$M_a(G)$      269 I (see also “$\mathfrak{L}_1(G)$”)
$M_a(G)$, isomorphic with $\mathfrak{L}_1$      272 I
$\alpha$-mesh      13 I
$\delta$-topology      360 I
$\Delta_a$      109 I 416—417
$\Delta_a$, character group of      402 I
$\Delta_a$, Haar measure on      202 I
$\Delta_p$      109 I
$\Delta_p$, automorphism group of      434 I
$\Delta_p$, minimal divisible extension of      419 I
$\iota$-almost everywhere      124 I
$\iota$-measurable function      125 I
$\iota$-measurable set      125 I
$\iota$-null function      124 I
$\iota$-null set      124 I
$\Lambda_p$ set      420
$\mathbb{Q}$ (rational numbers)      3 I
$\mathbb{Q}$, character group of      404 I 414
$\mathbb{R}$ (real line)      3 I
$\mathbb{R}$ is open continuous homomorph of totally disconnected group      50 I
$\mathbb{R}$, automorphism group of      433 I
$\mathbb{R}$, character group is R      367 I
$\mathbb{R}$, compact connected topology for      415 I
$\mathbb{R}$, continuous homomorphisms of      370 I
$\mathbb{R}$, Haar measure on      198 I
$\mathbb{R}$, invariant mean for $\mathfrak{U}_c(R)$      256 I
$\mathbb{R}$, invariant means for $\mathfrak{B}^r(R)$      240 I
$\mathbb{R}$, topologies in      27 I
$\mathbb{R}^n$      3 I
$\mathbb{R}^n$, automorphism group of      434 I
$\mathbb{R}^n$, characterized      104 I
$\mathbb{R}^n$, closed subgroups of      92 I
$\mathbb{Z}$ (integers)      3 I
$\mathbb{Z}$, character group is T      366 I
$\mathbb{Z}$, invariant mean for $\mathfrak{U}(Z)$      256 I
$\mathbb{Z}$, nondiscrete topology for      27 I
$\mathfrak{B}\mathfrak{L}(n, F)$      7 I
$\mathfrak{B}\mathfrak{L}(n, F)$ has inequivalent uniform structures      28—29 I
$\mathfrak{B}\mathfrak{L}(n, F)$ is locally Euclidean      29—31 I
$\mathfrak{B}\mathfrak{L}(n, F)$, Haar measure on      201 I 209
$\mathfrak{B}\mathfrak{L}(n, F)$, left invariant metric on      78 I
$\mathfrak{D}(3)$ , representations of      151
$\mathfrak{D}(n)$      7 I
$\mathfrak{D}(n)$ is compact      29 I
$\mathfrak{D}(n)$ is locally Euclidean      29—31 I
$\mathfrak{G}^{\ast}_0(X)$ as convolution algebra      265 I
$\mathfrak{G}^{\ast}_0(X)$, adjoint operation in      299 I
$\mathfrak{G}^{\ast}_0(X)$, equivalent with M(G)      269 I
$\mathfrak{G}_0(X)$      119 I
$\mathfrak{G}_0(X)$, characterized as Banach algebra      481 I
$\mathfrak{G}_0(X)$, closed ideals in      483 I
$\mathfrak{G}_0(X)$, conjugate space of      170 I 175
$\mathfrak{G}_0(X)$, multiplicative linear functionals of      484 I
$\mathfrak{G}_0(X)$, structure space is X      484 I
$\mathfrak{G}_{00}(X)$      119 I
$\mathfrak{G}_{00}(X)$, nonnegative linear functionals on      120 I
$\mathfrak{G}_{00}(X)$, unbounded linear functionals on      167 I
$\mathfrak{L}_1(G)$ has approximate unit      303 I
$\mathfrak{L}_1(G)$ has no unit      303 I
$\mathfrak{L}_1(G)$, all $\sim$-representations      294
$\mathfrak{L}_1(G)$, and $\mathfrak{C}_{00}(X)$      573
$\mathfrak{L}_1(G)$, center of      85 109
$\mathfrak{L}_1(G)$, commutative if and only if G is      302 I
$\mathfrak{L}_1(G)$, Ditkin’s condition      501
$\mathfrak{L}_1(G)$, factorization in      271 515
$\mathfrak{L}_1(G)$, ideals characterized      303 I
$\mathfrak{L}_1(G)$, isomorphic with $M_a(G)$      272 I
$\mathfrak{L}_1(G)$, spectral synthesis fails      597
$\mathfrak{L}_2(G)$, invariant subspaces      237
$\mathfrak{L}_p$ conjecture      469 471
$\mathfrak{L}_p$ Fourier transform      225 227
$\mathfrak{L}_p(G)$-maximal function      606 607
$\mathfrak{R}(G)$      260 330 338
$\mathfrak{R}(G)$, as convolution algebra      352
$\mathfrak{R}(G)$, Ditkin’s condition      344
$\mathfrak{R}(G)$, spectral synthesis fails      597
$\mathfrak{R}(G)$, structure space      340
$\mathfrak{S}\mathfrak{D}(3)$, representations of      136—141
$\mathfrak{S}\mathfrak{D}(n)$      71
$\mathfrak{S}\mathfrak{D}(n)$ is compact      29 I
$\mathfrak{S}\mathfrak{D}(n)$ is locally Euclidean      29—31 I
$\mathfrak{S}\mathfrak{L}(n,F)$      7 I
$\mathfrak{S}\mathfrak{L}(n,F)$ has inequivalent uniform structures      28—29 I
$\mathfrak{S}\mathfrak{L}(n,F)$ has no finite-dimensional unitary representations      350 I
$\mathfrak{S}\mathfrak{L}(n,F)$ is locally Euclidean      29—31 I
$\mathfrak{S}\mathfrak{L}(n,F)$, homomorphisms into $[0,\infty)$      212—213 I
$\mathfrak{S}\mathfrak{U}(2)$, Haar measure on      134
$\mathfrak{S}\mathfrak{U}(n)$      71
$\mathfrak{S}\mathfrak{U}(n)$ , representations of      125—136
$\mathfrak{S}\mathfrak{U}(n)$ is compact      29 I
$\mathfrak{S}\mathfrak{U}(n)$ is locally Euclidean      29—31 I
$\mathfrak{S}\mathfrak{U}(n)$, Hewitt and Ross, Abstract harmonic analysis      vol II
$\mathfrak{T}(G)$ (trigonometric polynomials)      5 211
$\mathfrak{T}(G)$ (trigonometric polynomials) is dense in $\mathfrak{C}(G)$      23
$\mathfrak{T}(G)$ (trigonometric polynomials) is dense in $\mathfrak{L}_p(G)$      211
$\mathfrak{T}(G)$ (trigonometric polynomials) is Krein algebra      163
$\mathfrak{T}(G)$ (trigonometric polynomials), invariant subspaces      204 473
$\mathfrak{T}(G)$ (trigonometric polynomials), linear functionals on      157 161 178—187
$\mathfrak{T}(G)$ (trigonometric polynomials), orthogonality relations      8 11 14
$\mathfrak{U}(2)$, representations of      150
$\mathfrak{U}(G)$      247 I 302
$\mathfrak{U}(G)$, existence of invariant means      250 I
$\mathfrak{U}(G)$, uniqueness of invariant means      252 I
$\mathfrak{U}(H)$      115 (see also “$\mathfrak{U}(n)$”)
$\mathfrak{U}(n)$      7 I
$\mathfrak{U}(n)$ is arcwise connected      64 I
$\mathfrak{U}(n)$ is compact      29 I
$\mathfrak{U}(n)$ is locally Euclidean      29—31 I
$\mathfrak{U}(n)$, closed subgroups      101 194 663
$\mathfrak{U}(n)$, integrals on      115—124 146
$\omega$-functions      259 I
$\Omega_a$      108 I
$\Omega_a$, character group of      400 I
$\Omega_a$, closed subgroups      116 I
$\Omega_a$, Haar measure on      202—203 I
$\Omega_r$      109 I
$\Omega_r$, automorphism group of      433 I
$\Omega_r$, character group is $\Omega_r$      400 I
$\Sigma$      2 (see also “Dual object”)
$\sigma$-algebra of sets      118 I
$\sigma$-bounded set      93
$\sigma$-compact spaces      111
$\sigma$-compact spaces, product of      13 —14 I
$\sigma$-finite set function      118 I
$\sigma$-locally finite      13 I
$\sigma$-ring of sets      118 I
$\sigma(E, \mathfrak{F})$ topology      717
$\sim$-representation      314 I
$\sup P_{\gamma}$      632
$\varepsilon$-mesh      13 I
0-dimensional group, small subgroups of      62 I
0-dimensional space      11 I
a-adic integers      109 I (see also “$\Delta_a$”)
a-adic numbers      109 I (see also “$\Omega_a$”)
a-adic solenoid      114 I
Abelian group      see “Group”
Abelian group, nondiscrete topologies      27 I
Absolutely continuous measure      180 I 269
Absolutely convergent Fourier series      330
Abstract Tauberian theorem      499
Act disjointedly      719
Additive function      452 I
Adjoint homomorphism      392 I
Adjoint homomorphism, generalized      203
Adjoint in $\mathfrak{B}^{\ast}(G)$      310 I
Adjoint in $\mathfrak{G}^{\ast}_0(G)$      299 I
Adjoint in $\mathfrak{G}^{\ast}_u(G)$      310 I
Adjoint in an algebra      313 I
Adjoint in M(G)      300 I
Adjoint operator      466 I 711 712
Agmon, S.      521
Akemann, C. A.      113 414 447
Alaoglu’s theorem      458 I
Algebra      469 I
Algebra of sets      118 I
Algebra with adjoint operation      313 I
Algebra, $\sim$-algebra      313 I
Algebra, convolution      263 I
Algebra, homomorphism      470 I
Algebra, imbedded in algebra with unit      470 I
Almost everywhere      124 I
Almost periodic compactification      311
Almost periodic function      247 I (see also “$\mathfrak{U}(G)$”)
Alternating group      46
Ambrose, W.      326
Amitsur, A. S.      474
Analytic functions operating in algebras      490 603
Annihilator of $P \subset \Sigma$      62
Annihilator of $X \subset G$      365 I 64
Annihilator, generalized      202
Anti-symmetric tensors      148
Approximate unit      303 I
Approximate unit for $\mathfrak{L}_1(G)$      303 I 107
Approximate unit for compact groups      88 273 286 335
Approximate unit for LCA groups      298
Approximate unit, bounded      87
Approximation theorems      431—432 I 435
Arbitrarily small sets      62 I
Arcwise connected space      111
Artin, E.      143
Automorphism group      426—429 I
Automorphism group, examples      433 I
Automorphism group, inner automorphism subgroup      439 I
Automorphism group, modular function of      438 I
Automorphism group, non locally compact      435 I
Automorphism, inner      4 I
Automorphism, topological      426 I 208
Babenko, K. I.      630
Baire category theorem      42 I 456
Baire measurable function      118 I
Baire sets      118 I
Baire sets and Haar measure      280 I
Balanced neighborhood      453 I
Banach $\sim$-algebra      313 I
Banach A -module      263
Banach algebra      469 I
Banach algebra in $\mathfrak{G}(X)$      484
Banach algebra in $\mathfrak{G}_0(X)$, where X is the structure space      489
Banach fields, characterized      473 I
Banach modules in $\mathfrak{L}_1(X)$      451 502
Banach modules in $\mathfrak{L}_1(X)$, spectral synthesis fails      600
Banach space      455 I
Banach space, reflexive      457 I
Banach space, weak topology      458 I
Banach space, weak-$^{\ast}$ topology      458 I
Banach — Steinhaus theorem      456 I
Banach, S.      435 446 447
Bari, N. K.      250 366
Basis of a group      442 I
Basis of a linear space      681
Basis of a measure space      215 I
Basis, orthonormal      465 I
Belong locally      495
Bernstein, S.      441
Berry, A. C.      251 327
Beurling, A.      519 521 522 549 550 551 601 605
Bieberbach, L.      445
Bilinear functional      453 I
Bilinear functional, bounded      468 I
Bird      210
Birkhoff, G.      6 45 683
Blocks of Krein algebra      162
Bochner, S.      206 250 251 289 325 326 327 413 448 520 549
Bochner’s theorem      293 160
Boerner, H.      153 155
Bohr compactification      430 I 302
Bohr, H.      312 448 519
Boolean $\sigma$-homomorphism      316
Borel measurable function      118 I
Borel sets      118 I
Boundary      497
Bounded bilinear functional      468 I
Bounded left approximate unit      87 (see also “Approximate unit”)
Bounded linear function      454 I
Bounded linear function, relatively      461 I
Bounded order      439 I
Bounded order, characterized      449 I
Bourbaki, N.      115
Brainerd, B.      414 434
Bunyakovskii’s inequality      137 I
Burckel, R. B.      310 399 726
Burckhardt, H.      250
Burnside, W.      54 59 60 480
Calderon sets      513
Cancellation laws      98—99 I
Cancellation semigroup      258 I
Caratheodory outer measure      123 I
Caratheodory, C.      325
Cardinal number of character groups      382 I 396
Cardinal number of dual objects      43 61 99
Cardinal number of nondiscrete locally compact groups      31 I
Cardinal number, notation for      2 I
Carleman, T.      251 435 520
Carleson set      575
Carleson, L.      574 575
Cartan, E.      153 548
Cartan, H.      250 251 253 309 310 327
Cartesian product of sets      2 I
Category, Baire      456 I
Category, theorem of Baire      42 I 456
Cauchy — Bunyakovskii — Schwarz inequality      464 I
Cauchy’s inequality      137 I
Cayley, A.      156
Cech, E.      99
Center of $\mathfrak{L}_1(G)$      85 109
Center of a semigroup      84
Center of a topological group      46 I 65 4291
Center of an algebra      84
Central element      84
Central functions      84
Central measures      84
Chandrasekharan, K.      520
Character group      355 I
Character group and structure space of $M_a(G)$      358—361 I
Character group of $Q_d$      404 I 414
Character group of $R_d$      405 I
Character group of $T_d$      405 I
Character group of $\Delta_a$      402 I
Character group of $\Omega_a$      400 I
Character group of $\Sigma_a$      403 I
Character group of closed subgroup      380 I
Character group of finite group      367 I
Character group of local direct product      373 I
Character group of products      362—365 I
Character group of quotient group      365 I
Character group of R      367 I
Character group of T      366 I
Character group of weak direct product      364 I
Character group of Z      366 I
Character group with only one element      350 I 370
Character group, $\Delta$-topology of      360 I
Character group, P-topology of      361 I
Character group, topologically isomorphic with the group      422 I
Character of a measure space      215 I
Character of a measure space and dimension of $\mathfrak{L}_2$      225 I
Character of a representation      13
Character(s) (of a group)      345 I
Character(s), $\lambda$-measurable implies continuous      346 I
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте