Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Holm D., Schmah T., Stoica C. — Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions (Texts in Applied and Engineering Mathematics N 12)
Holm D., Schmah T., Stoica C. — Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions (Texts in Applied and Engineering Mathematics  N 12)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions (Texts in Applied and Engineering Mathematics N 12)

Авторы: Holm D., Schmah T., Stoica C.

Аннотация:

Classical mechanics, one of the oldest branches of science, has undergone a long evolution, developing hand in hand with many areas of mathematics, including calculus, differential geometry, and the theory of Lie groups and Lie algebras. The modern formulations of Lagrangian and Hamiltonian mechanics, in the coordinate-free language of differential geometry, are elegant and general. They provide a unifying framework for many seemingly disparate physical systems, such as n-particle systems, rigid bodies, fluids and other continua, and electromagnetic and quantum systems.Geometric Mechanics and Symmetry is a friendly and fast-paced introduction to the geometric approach to classical mechanics, suitable for a one- or two- semester course for beginning graduate students or advanced undergraduates. It fills a gap between traditional classical mechanics texts and advanced modern mathematical treatments of the subject. After a summary of the necessary elements of calculus on smooth manifolds and basic Lie group theory, the main body of the text considers how symmetry reduction of Hamilton's principle allows one to derive and analyze the Euler-Poincar? equations for dynamics on Lie groups.Additional topics deal with rigid and pseudo-rigid bodies, the heavy top, shallow water waves, geophysical fluid dynamics and computational anatomy. The text ends with a discussion of the semidirect-product Euler-Poincar? reduction theorem for ideal fluid dynamics.A variety of examples and figures illustrate the material, while the many exercises, both solved and unsolved, make the book a valuable class text.


Язык: en

Рубрика: Разное/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2009

Количество страниц: 537

Добавлена в каталог: 19.03.2015

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте