Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Predicting Structured Data
Авторы: Bakir G., Hofmann T., Scholkopf B.
Аннотация:
Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning’s greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field. Contributors: Yasemin Altun, G?khan Bak?r, Olivier Bousquet, Sumit Chopra, Corinna Cortes, Hal Daum? III, Ofer Dekel, Zoubin Ghahramani, Raia Hadsell, Thomas Hofmann, Fu Jie Huang, Yann LeCun, Tobias Mann, Daniel Marcu, David McAllester, Mehryar Mohri, William Stafford Noble, Fernando P?rez-Cruz, Massimiliano Pontil, Marc’Aurelio Ranzato, Juho Rousu, Craig Saunders, Bernhard Sch?lkopf, Matthias W. Seeger, Shai Shalev-Shwartz, John Shawe-Taylor, Yoram Singer, Alexander J. Smola, Sandor Szedmak, Ben Taskar, Ioannis Tsochantaridis, S. V. N. Vishwanathan, and Jason Weston