|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Plischke M., Bergersen B. — Equilibrium statistical physics |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Memory 372
Mermin — Wagner theorem 210 509
Mesoscopic system 303
microcanonical ensemble 29—35 38 49 51 52
Microcanonical ensemble, partition function 40
Microemulsions 415
Microscopic reversibility 494—498
Migdal — Kadanoff transformation 296—297
Mixing entropy 33 55
Mixing hypothesis 31 33
Mixing van der Waals theory 127
Mobility 324
Mobility edge 523—525
Molecular Dynamics 350—357 379 381
Molecular motors 134
Momentum Space Renormalization Group 551
Monte Carlo method 306 350 399 409
Monte Carlo methods 357—370
Monte Carlo methods, data analysis 365—370
Monte Carlo methods, finite-size scaling 368—370
Monte Carlo methods, histogram methods 363—364
Monte Carlo methods, Markov processes 358—359
Monte Carlo methods, Metropolis algorithm 359—362
Monte Carlo methods, neural networks 371—375
Monte Carlo methods, simulated annealing 376—379
Monte Carlo methods, traveling salesman 376—379
Monte Carlo renormalization 272—275 539
Monte Carlo simulations 368 535 536 548 551
Multicomponent order parameter 64 100
n-vector model 99 292 297 383 543—551
n-vector model, application to linear polymers 395
Narural boundary 328
Nematic liquid crystals 100 114 117 129
Net reproduction rate 315
Neural networks 371—375
Neutral evolution 329
Neutron scattering 153 478
Noise function 354
Noise strength 353
Non-equilibrium phenomena 492
Noninteracting bosons 45
Noninteracting fermions 44
Normal coordinates 55
Normal modes 419
Normal systems 35
Nose — Hoover dynamics 350
NTP ensemble 361 366
Number operator 574
Occupation number 44 467
Occupation number representation 569—582
Off-diagonal long range order 428 449
Ohm’s Law 493 503
One step process 306 307 313
One-body operators 577
Onsager relations 494—498 510
Onsager solution, two-dimensional Ising model 73 184—200 207
Onsager, L. 268
Open systems 12 25
Optimized Monte Carlo method 364
Order of phase transitions 64
Order parameter 63—65 67 68 71 73 74 80 83—86 90 92 94 95 97 99 100 104 105 111—113 116 118—123 126 137 138 184 194 210 217 364 368
Order parameter, Edwards — Anderson 558
Order parameter, percolation 534
Order parameter, superfluids 428 433
Order-disorder transition 110
Ordering in alloys 109 110 112 113
Ornstein — Uhlenbeck process 327
Ornstein — Zernike equation 144 158 160 161 168 177 178
Osmotic pressure 402—405
Pade approximant 207 234
Pair connectedness 534 536
Pair correlation function 151 155 157 469
Pair distribution function 80 114 115 153 154 157—160 162 181 472 508 579
Pair potential 114 124 144 161 350
Paramagnet 3 25
Particle current 321
Pauli principle 44
Pauli spin operators 185
Pawula’s theorem 323
Peierls, R.E. 71
Peltier effects 493
Percolation 524 530—542 549—551 567
Percolation, backbone 533
Percolation, critical exponents 536
Percolation, scaling theory 534—536
Percus — Yevick equation 159 160
Periodic boundary conditions 238 357 516 518 519
Permeability 19 20
Permittivity 230
Persistence length 385 386 405 416 417
Perturbation theory of liquids 144 160—163 180
Phantom membranes 406 408 409 411 413
phase diagram 20 21 23 92 120 129
Phase separation 113 115 120 127 137
Phase space 30 32 33 40 51 54
Phase transitions 20 65 85 105 106 183 219 220 229 542—551
Phase transitions, continuous 222
Phase transitions, disordered materials 542—551
Phenomenological renormalization group 275 542
Phonons 480
Phonons, metals 487—490
Planar magnets 232 233
Plasma frequency 485
Plasmons 480—485 508
Polarization 56 474
Polyethylene 384 385
Polymers 383—420
Polymers, point 402
Polymers, connection to n-vector model 395—399
Polymers, critical exponents 399
Polymers, dense solutions 400—405
Polymers, dense solutions, mean field theory 400—403
Polymers, Edwards model 394—395
Polymers, entropic elasticity 390
Polymers, excluded volume effects 391—395
Polymers, Flory theory 391—395
Polymers, Flory — Huggins theory 400—403
Polymers, freely jointed chain 386—389
Polymers, good and poor solvents 393
Polymers, linear polymers 384—405
Polymers, osmotic pressure 402
Polymers, self-avoiding walks 391
Position space renormalization group 282 551
Position-space renormalization group 258—275
Potts model 87 100 106 107 271 534
Predator-prey interaction 305
Pressure equation of state 356
Pressure, statistical definition 34
Probability current 321 322 325 326
probability distribution 48—52 357 361 369 389
Projection operator 259 275
Propagator 468
Pseudopotential 115 119
PVT system 11—14 20—24
q-state Potts model 107
Quantum fluids 421—459
Quantum phase transitions 225
quantum states 33 43 44 46 59
Quantum statistics 40 43 44
Quantum systems 469
Quantum-classical correspondence 186
Quasi-elastic scattering 506
Quasistatic process 4
Quenched disorder 515 543—546 557 559
Radius of gyration 387 392 394 399 407 411
Raising and lowering operators 313
Random fields 548
Random number generator 379
Random resistor network 541 542
Random walk 102 103 359 388 390 391
| Random walk, biased 385
Rayleigh particle 326—328
Reciprocal lattice 475
Recursion relation 242—244 246 250 253 273 282 288 290 292
Recursion relations 246 248 263 266 275 296 299
Recursion series 257
Red blood cells 405 414
Reduced distribution function 151 157 178
Reflecting boundary condition 325
Regular matrix 358 360
Relativistic ideal gas 61
Relaxation time 368
Relaxation time approximation 499 504 510
Relaxation time, anisotropic 501
Relevant scaling field 247 266 395 410
Remanence 554
Renormalization flow 240 241 244 246 251 252 264 290
Renormalization group 237—300 395 417 548 550
Renormalization group, -expansion 279—292 297—300
Renormalization group, anisotropic n-vector model 297—300
Renormalization group, cumulant approximation 258—266 295
Renormalization group, finite lattice methods 267—268
Renormalization group, fixed points 240 242—248
Renormalization group, Migdal — Kadanoff method 296—297
Renormalization group, momentum space 551
Renormalization group, Monte Carlo renormalization 272—275
Renormalization group, one-dimensional Ising model 238—242 295
Renormalization group, percolation 538—539 567
Renormalization group, phenomenological 275—279
Renormalization group, position space 551
Renormalization group, real space 538
Renormalization group, scaling and universality 246—248
Replica symmetry 375
Replica trick 544—546 558—565
Replica trick, replica symmetry breaking 565
Reservoir 5
Response function 1 14 15 39
Response function, frequency dependent 461—490
Return probability 335
Reversibility, microscopic 494 498
Reversible process 4—11 25
Rigid band approximation 525
Rigidity percolation 540
RKKY interaction 554
Rotating bucket experiment 434
Rotational quantum number 59
Rotational symmetry 99
Rubber 390 541
Rupture 258
Rushbrooke inequality 211 212
Sackur — Tetrode equation 34 62
Scaling 246—248 284
Scaling fields 132
Scaling laws 183 209—211 214—223 235
Scaling relation 369
Scaling, fields 245 247 289
Scaling, theory of percolation 534—536
Schottky defect 53
Schroedinger equation 330 343
screening 480—485 507—509
Second law of thermodynamics 3—9 26
Second neighbor interaction 243 247
Second order phase transition 68 87 95 104 120 364
Second quantization 188 569
Second sound 438—439
Seebeck effect 493
Self-adjoint operators 344
Self-avoiding membranes 406 409 411 413 415 417
Self-avoiding random walk 391—393 395 396 398 420
Semi classical approximation 499
Semiclassical quantization 32 33 51 499
Semidilute solutions 403—405
Semipermeable membrane 402
Sensitivity to initial conditions 31 353
Separation of variables 330 332
Series expansion 199 200 202 206 207 209—211 218 224 235 399 536—538
Series expansion, analysis of series 200 206 207 215
Series expansion, high temperature 397
Series expansion, specific heat 210
Series expansion, susceptibility 202 225 234 290 399
Series exspansion percolation 538
Shannon, C.E. 50
Shear force 540
shear modulus 415
Sherrington — Kirkpatrick model 558—565
Simulated annealing 376—379 382
Simulations 349—382
SIR model 316—321 345
Site percolation 530
Slab geometry 222 223
Slater determinant 44 571
Smectic phases 117
Solid-solid solutions 137
Solvent 402
Solvents, good and poor 393 394 402 403 405
Spanning cluster 530
Specific heat 1 14 19 25 27 28 59 75 84 200 209 211 220 356 357 365
Specific heat, Bethe approximation 101
Specific heat, critical exponent 76 216
Specific heat, one-dimensional Ising model 80
Specific heat, scaling laws 221
Specific heat, series expansion 210
Specific heat, tricritical point 92
Specific heat, two-dimensional Ising model 184 196 197 233 234
Spectrin network 414
Spin glass 371
Spin glasses 554—565
Spin glasses, Sherrington — Kirkpatrick model 558—565
Spin waves 229 232 235 477—480 509
Spinodal 127 131
Spontaneous magnetization 66 79 257
Spontaneous process 4 8 9 11 18
Spruce budworm model 129—132 307 345
Stability 1 15 17 18 25 28 290
Stability, local 27
Stable fixed point 275 287
Star graph 150
State variable 1—4 8 10 11 20
Statistical ensembles 29—62
Steady state 2 306 315 322 324 325
Steady state probability 358 359
Steepest descent 376 377
Stimulation 371
Stirling’s formula 34 400
Stochastic processes 303—347 357
Stochastic variable 304
Stock market crashes 258
Stokes law 326
Stored pattern 372 373
Strong fields 499
Structure factor, dynamic 462—490 508
Structure factor, static 153 156 161 469 470 579—582
Subdiffusion 333
Sublattices 113 270
Substitutional disorder 516
Sum rules 470—472
Super leak 436
Superconductivity 100 168 226 228 442—456 490
Superconductivity, BCS theory 445—452
Superconductivity, Cooper problem 443—444
Superconductivity, critical fluctuations 98
Superconductivity, Landau — Ginzburg theory 453—456
Superdiffusion 333
Superfluid films 228
Superfluidity 100 430—442 458—459
Superfluidity, elementary excitations 430—432 439—442
Superionic conductors 134
Superposition approximation 158
Surface roughening 171
Surface tension 163—165 168 169
|
|
|
Ðåêëàìà |
|
|
|