√лавна€    Ex Libris     ниги    ∆урналы    —татьи    —ерии     аталог    Wanted    «агрузка    ’удЋит    —правка    ѕоиск по индексам    ѕоиск    ‘орум   
blank
јвторизаци€

       
blank
ѕоиск по указател€м

blank
blank
blank
 расота
blank
Plischke M., Bergersen B. Ч Equilibrium statistical physics
Plischke M., Bergersen B. Ч Equilibrium statistical physics



ќбсудите книгу на научном форуме



Ќашли опечатку?
¬ыделите ее мышкой и нажмите Ctrl+Enter


Ќазвание: Equilibrium statistical physics

јвторы: Plischke M., Bergersen B.

јннотаци€:

This third edition of one of the most important and best selling textbooks in statistical physics, is a graduate level text suitable for students in physics, chemistry, and materials science. Highlights of the book include a discussion of strongly interacting condensed matter systems with a thorough treatment of mean field and Landau theories of phase transitions. Discussions of the Potts model and the asymmetric exclusion process have been added. Along with traditional approaches to the subject such as the virial expansion and integral equations, newer theories such as perturbation theory and density functional theories are introduced. The modern theory of phase transitions occupies a central place in this book. A separate, largely rewritten, chapter is devoted to the renormalization group approach to critical phenomena, with detailed discussion of the basic concepts of this important technique and examples of both exact and approximate calculations given. The development of the basic tools is completed in an expanded chapter on computer simulations in which both Monte Carlo and molecular dynamics techniques are introduced.


язык: en

–убрика: ‘изика/

—татус предметного указател€: √отов указатель с номерами страниц

ed2k: ed2k stats

»здание: 3rd

√од издани€: 2006

 оличество страниц: 639

ƒобавлена в каталог: 22.11.2014

ќперации: ѕоложить на полку | —копировать ссылку дл€ форума | —копировать ID
blank
ѕредметный указатель
Memory      372
Mermin Ч Wagner theorem      210 509
Mesoscopic system      303
microcanonical ensemble      29Ч35 38 49 51 52
Microcanonical ensemble, partition function      40
Microemulsions      415
Microscopic reversibility      494Ч498
Migdal Ч Kadanoff transformation      296Ч297
Mixing entropy      33 55
Mixing hypothesis      31 33
Mixing van der Waals theory      127
Mobility      324
Mobility edge      523Ч525
Molecular Dynamics      350Ч357 379 381
Molecular motors      134
Momentum Space Renormalization Group      551
Monte Carlo method      306 350 399 409
Monte Carlo methods      357Ч370
Monte Carlo methods, data analysis      365Ч370
Monte Carlo methods, finite-size scaling      368Ч370
Monte Carlo methods, histogram methods      363Ч364
Monte Carlo methods, Markov processes      358Ч359
Monte Carlo methods, Metropolis algorithm      359Ч362
Monte Carlo methods, neural networks      371Ч375
Monte Carlo methods, simulated annealing      376Ч379
Monte Carlo methods, traveling salesman      376Ч379
Monte Carlo renormalization      272Ч275 539
Monte Carlo simulations      368 535 536 548 551
Multicomponent order parameter      64 100
n-vector model      99 292 297 383 543Ч551
n-vector model, application to linear polymers      395
Narural boundary      328
Nematic liquid crystals      100 114 117 129
Net reproduction rate      315
Neural networks      371Ч375
Neutral evolution      329
Neutron scattering      153 478
Noise function      354
Noise strength      353
Non-equilibrium phenomena      492
Noninteracting bosons      45
Noninteracting fermions      44
Normal coordinates      55
Normal modes      419
Normal systems      35
Nose Ч Hoover dynamics      350
NTP ensemble      361 366
Number operator      574
Occupation number      44 467
Occupation number representation      569Ч582
Off-diagonal long range order      428 449
OhmТs Law      493 503
One step process      306 307 313
One-body operators      577
Onsager relations      494Ч498 510
Onsager solution, two-dimensional Ising model      73 184Ч200 207
Onsager, L.      268
Open systems      12 25
Optimized Monte Carlo method      364
Order of phase transitions      64
Order parameter      63Ч65 67 68 71 73 74 80 83Ч86 90 92 94 95 97 99 100 104 105 111Ч113 116 118Ч123 126 137 138 184 194 210 217 364 368
Order parameter, Edwards Ч Anderson      558
Order parameter, percolation      534
Order parameter, superfluids      428 433
Order-disorder transition      110
Ordering in alloys      109 110 112 113
Ornstein Ч Uhlenbeck process      327
Ornstein Ч Zernike equation      144 158 160 161 168 177 178
Osmotic pressure      402Ч405
Pade approximant      207 234
Pair connectedness      534 536
Pair correlation function      151 155 157 469
Pair distribution function      80 114 115 153 154 157Ч160 162 181 472 508 579
Pair potential      114 124 144 161 350
Paramagnet      3 25
Particle current      321
Pauli principle      44
Pauli spin operators      185
PawulaТs theorem      323
Peierls, R.E.      71
Peltier effects      493
Percolation      524 530Ч542 549Ч551 567
Percolation, backbone      533
Percolation, critical exponents      536
Percolation, scaling theory      534Ч536
Percus Ч Yevick equation      159 160
Periodic boundary conditions      238 357 516 518 519
Permeability      19 20
Permittivity      230
Persistence length      385 386 405 416 417
Perturbation theory of liquids      144 160Ч163 180
Phantom membranes      406 408 409 411 413
phase diagram      20 21 23 92 120 129
Phase separation      113 115 120 127 137
Phase space      30 32 33 40 51 54
Phase transitions      20 65 85 105 106 183 219 220 229 542Ч551
Phase transitions, continuous      222
Phase transitions, disordered materials      542Ч551
Phenomenological renormalization group      275 542
Phonons      480
Phonons, metals      487Ч490
Planar magnets      232 233
Plasma frequency      485
Plasmons      480Ч485 508
Polarization      56 474
Polyethylene      384 385
Polymers      383Ч420
Polymers, $\Theta$ point      402
Polymers, connection to n-vector model      395Ч399
Polymers, critical exponents      399
Polymers, dense solutions      400Ч405
Polymers, dense solutions, mean field theory      400Ч403
Polymers, Edwards model      394Ч395
Polymers, entropic elasticity      390
Polymers, excluded volume effects      391Ч395
Polymers, Flory theory      391Ч395
Polymers, Flory Ч Huggins theory      400Ч403
Polymers, freely jointed chain      386Ч389
Polymers, good and poor solvents      393
Polymers, linear polymers      384Ч405
Polymers, osmotic pressure      402
Polymers, self-avoiding walks      391
Position space renormalization group      282 551
Position-space renormalization group      258Ч275
Potts model      87 100 106 107 271 534
Predator-prey interaction      305
Pressure equation of state      356
Pressure, statistical definition      34
Probability current      321 322 325 326
probability distribution      48Ч52 357 361 369 389
Projection operator      259 275
Propagator      468
Pseudopotential      115 119
PVT system      11Ч14 20Ч24
q-state Potts model      107
Quantum fluids      421Ч459
Quantum phase transitions      225
quantum states      33 43 44 46 59
Quantum statistics      40 43 44
Quantum systems      469
Quantum-classical correspondence      186
Quasi-elastic scattering      506
Quasistatic process      4
Quenched disorder      515 543Ч546 557 559
Radius of gyration      387 392 394 399 407 411
Raising and lowering operators      313
Random fields      548
Random number generator      379
Random resistor network      541 542
Random walk      102 103 359 388 390 391
Random walk, biased      385
Rayleigh particle      326Ч328
Reciprocal lattice      475
Recursion relation      242Ч244 246 250 253 273 282 288 290 292
Recursion relations      246 248 263 266 275 296 299
Recursion series      257
Red blood cells      405 414
Reduced distribution function      151 157 178
Reflecting boundary condition      325
Regular matrix      358 360
Relativistic ideal gas      61
Relaxation time      368
Relaxation time approximation      499 504 510
Relaxation time, anisotropic      501
Relevant scaling field      247 266 395 410
Remanence      554
Renormalization flow      240 241 244 246 251 252 264 290
Renormalization group      237Ч300 395 417 548 550
Renormalization group, $\epsilon$-expansion      279Ч292 297Ч300
Renormalization group, anisotropic n-vector model      297Ч300
Renormalization group, cumulant approximation      258Ч266 295
Renormalization group, finite lattice methods      267Ч268
Renormalization group, fixed points      240 242Ч248
Renormalization group, Migdal Ч Kadanoff method      296Ч297
Renormalization group, momentum space      551
Renormalization group, Monte Carlo renormalization      272Ч275
Renormalization group, one-dimensional Ising model      238Ч242 295
Renormalization group, percolation      538Ч539 567
Renormalization group, phenomenological      275Ч279
Renormalization group, position space      551
Renormalization group, real space      538
Renormalization group, scaling and universality      246Ч248
Replica symmetry      375
Replica trick      544Ч546 558Ч565
Replica trick, replica symmetry breaking      565
Reservoir      5
Response function      1 14 15 39
Response function, frequency dependent      461Ч490
Return probability      335
Reversibility, microscopic      494 498
Reversible process      4Ч11 25
Rigid band approximation      525
Rigidity percolation      540
RKKY interaction      554
Rotating bucket experiment      434
Rotational quantum number      59
Rotational symmetry      99
Rubber      390 541
Rupture      258
Rushbrooke inequality      211 212
Sackur Ч Tetrode equation      34 62
Scaling      246Ч248 284
Scaling fields      132
Scaling laws      183 209Ч211 214Ч223 235
Scaling relation      369
Scaling, fields      245 247 289
Scaling, theory of percolation      534Ч536
Schottky defect      53
Schroedinger equation      330 343
screening      480Ч485 507Ч509
Second law of thermodynamics      3Ч9 26
Second neighbor interaction      243 247
Second order phase transition      68 87 95 104 120 364
Second quantization      188 569
Second sound      438Ч439
Seebeck effect      493
Self-adjoint operators      344
Self-avoiding membranes      406 409 411 413 415 417
Self-avoiding random walk      391Ч393 395 396 398 420
Semi classical approximation      499
Semiclassical quantization      32 33 51 499
Semidilute solutions      403Ч405
Semipermeable membrane      402
Sensitivity to initial conditions      31 353
Separation of variables      330 332
Series expansion      199 200 202 206 207 209Ч211 218 224 235 399 536Ч538
Series expansion, analysis of series      200 206 207 215
Series expansion, high temperature      397
Series expansion, specific heat      210
Series expansion, susceptibility      202 225 234 290 399
Series exspansion percolation      538
Shannon, C.E.      50
Shear force      540
shear modulus      415
Sherrington Ч Kirkpatrick model      558Ч565
Simulated annealing      376Ч379 382
Simulations      349Ч382
SIR model      316Ч321 345
Site percolation      530
Slab geometry      222 223
Slater determinant      44 571
Smectic phases      117
Solid-solid solutions      137
Solvent      402
Solvents, good and poor      393 394 402 403 405
Spanning cluster      530
Specific heat      1 14 19 25 27 28 59 75 84 200 209 211 220 356 357 365
Specific heat, Bethe approximation      101
Specific heat, critical exponent      76 216
Specific heat, one-dimensional Ising model      80
Specific heat, scaling laws      221
Specific heat, series expansion      210
Specific heat, tricritical point      92
Specific heat, two-dimensional Ising model      184 196 197 233 234
Spectrin network      414
Spin glass      371
Spin glasses      554Ч565
Spin glasses, Sherrington Ч Kirkpatrick model      558Ч565
Spin waves      229 232 235 477Ч480 509
Spinodal      127 131
Spontaneous magnetization      66 79 257
Spontaneous process      4 8 9 11 18
Spruce budworm model      129Ч132 307 345
Stability      1 15 17 18 25 28 290
Stability, local      27
Stable fixed point      275 287
Star graph      150
State variable      1Ч4 8 10 11 20
Statistical ensembles      29Ч62
Steady state      2 306 315 322 324 325
Steady state probability      358 359
Steepest descent      376 377
Stimulation      371
StirlingТs formula      34 400
Stochastic processes      303Ч347 357
Stochastic variable      304
Stock market crashes      258
Stokes law      326
Stored pattern      372 373
Strong fields      499
Structure factor, dynamic      462Ч490 508
Structure factor, static      153 156 161 469 470 579Ч582
Subdiffusion      333
Sublattices      113 270
Substitutional disorder      516
Sum rules      470Ч472
Super leak      436
Superconductivity      100 168 226 228 442Ч456 490
Superconductivity, BCS theory      445Ч452
Superconductivity, Cooper problem      443Ч444
Superconductivity, critical fluctuations      98
Superconductivity, Landau Ч Ginzburg theory      453Ч456
Superdiffusion      333
Superfluid films      228
Superfluidity      100 430Ч442 458Ч459
Superfluidity, elementary excitations      430Ч432 439Ч442
Superionic conductors      134
Superposition approximation      158
Surface roughening      171
Surface tension      163Ч165 168 169
1 2 3 4
blank
–еклама
blank
blank
HR
@Mail.ru
       © Ёлектронна€ библиотека попечительского совета мехмата ћ√”, 2004-2020
Ёлектронна€ библиотека мехмата ћ√” | Valid HTML 4.01! | Valid CSS! ќ проекте