Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
|
Название: S-TREE: self-organizing trees for data clustering and online
Авторы: Campos M.M., Carpenter G.A.
Аннотация:
This paper introduces S-TREE (Self-Organizing Tree), a family of models that use unsupervised learning to construct hierarchical representations of data and online tree-structured vector quantizers. The S-TREE1 model, which features a new tree-building algorithm. can be implemented with various cost functions. An alternative implementation. S-TREE2, which uses a new double-path search procedure, is also developed. The performance of the S-TREE algorithms is illustrated with data clustering and vector quantization examples, including a Gauss-Markov source benchmark and an image compression application. S-TREE performance on these tasks is compared with the standard tree-structured vector quantizer (TSVQ) and the generalized Lloyd algorithm (GLA). The image reconstruction quality with S-TREE2 approaches that of GLA while taking less than 10% of computer time. S-TREE1 and S-TREE2 also compare favorably with the standard TSVQ in both the time needed to create the codebook and the quality of image reconstruction. © 2001 Elsevier Science Ltd. All rights reserved.
Язык:
Рубрика: Computer science/
Тип: Статья
Статус предметного указателя: Неизвестно
ed2k: ed2k stats
Год издания: 2000
Количество страниц: 21
Добавлена в каталог: 11.09.2006
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
|