Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Tomsich P., Rauber A., Merkl D. — Optimizing the parSOM Neural Network Implementation for Data Mining with Distributed Memory Systems and Cluster Computing
Tomsich P., Rauber A., Merkl D. — Optimizing the parSOM Neural Network Implementation for Data Mining with Distributed Memory Systems and Cluster Computing



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Optimizing the parSOM Neural Network Implementation for Data Mining with Distributed Memory Systems and Cluster Computing

Авторы: Tomsich P., Rauber A., Merkl D.

Аннотация:

The self-organizing map is a prominent unsupervised neural network model which lends itself to the analysis of high-dimensional input data and data mining applications. However, the high execution times required to train the map put a limit to its application in many high-performance data analysis application domains.
In this paper we discuss the /orSOM implementation, a software-based parallel implementation of the self-organizing map, and its optimization for the analysis of high-dimensional input data using distributed memory systems and clusters. The original /orSOM algorithm scales very well in a parallel execution environment with low communication latencies and exploits parallelism to cope with memory latencies. However it suffers from poor scalability on distributed memory computers. We present optimizations to further decouple the subprocesses, simplify the communication model and improve the portability' of the system.


Язык: en

Рубрика: Computer science/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 5

Добавлена в каталог: 11.09.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте