Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Markl M., Shnider S., Stasheff J. — Operads in Algebra, Topology and Physics
Markl M., Shnider S., Stasheff J. — Operads in Algebra, Topology and Physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Operads in Algebra, Topology and Physics

Авторы: Markl M., Shnider S., Stasheff J.

Аннотация:

Operads are mathematical devices which describe algebraic structures of many varieties and in various categories. Operads are particularly important in categories with a good notion of "homotopy" where they play a key role in organizing hierarchies of higher homotopies. Significant examples first appeared in the sixties though the formal definition and appropriate generality waited for the seventies. These early occurrences were in algebraic topology in the study of (iterated) loop spaces and their chain algebras. In the nineties, there was a renaissance and further development of the theory inspired by the discovery of new relationships with graph cohomology, representation theory, algebraic geometry, derived categories, Morse theory, symplectic and contact geometry, combinatorics, knot theory, moduli spaces, cyclic cohomology, and, not least, theoretical physics, especially string field theory and deformation quantization. The generalization of quadratic duality (e.g., Lie algebras as dual to commutative algebras) together with the property of Koszulness in an essentially operadic context provided an additional computational tool for studying homotopy properties outside of the topological setting. The book contains a detailed and comprehensive historical introduction describing the development of operad theory from the initial period when it was a rather specialized tool in homotopy theory to the present when operads have a wide range of applications in algebra, topology, and mathematical physics. Many results and applications currently scattered in the literature are brought together here along with new results and insights. The basic definitions and constructions are carefully explained and include many details not found in any of the standard literature. There is a chapter on topology, reviewing classical results with the emphasis on the $W$-construction and homotopy invariance. Another chapter describes the (co)homology of operad algebras, minimal models, and homotopy algebras. A chapter on geometry focuses on the configuration spaces and their compactifications. A final chapter deals with cyclic and modular operads and applications to graph complexes and moduli spaces of surfaces of arbitrary genus.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2002

Количество страниц: 178

Добавлена в каталог: 12.04.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Symmetric groupoid      40
Symmetric monoidal category      37
Symmetrization of a non-$\Sigma$ operad      45
T-algebra      88
T-ordering      156
TCFT      23
Teichmueller space      291
Topological $A_\infty$-category      15
Topological conformal field theory      304
Topological Feynman transform      312
Topological field theory      22
Trace      257
Tree category of labeled rooted trees      52
Tree corresponding to a surjection      151
Tree degree      124 128
Tree differential      124
Tree level      23
Tree operad      8
Triple      88
Trivial tree      50
Twisting cochain      262
Two-sided bar construction      96
Unit object      37
Universal bilinear form      261
Universal differential      260
Unordered $\odot$-product      64
Unrooted tree      250
unsh(-,...,-) set of unshuffles      99
Unshuffle      99
V-manifold      293
Valence      268
Vec category of vector spaces      38
Vert(T) set of (internal) vertices of a tree T      51 250
Vertex      51 269
Virasoro algebra      24
Virtual configuration      225
W-construction      111
Weak equivalence      187
Weak homotopy type      187
X-labeled tree      52
[n] set {1,...,n}      40
|T| number of internal edges of a tree T      123
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте