Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dzwinel W., Yuen D.A., Boryczko K. — Cluster Analysis, Data-Mining, Multi-dimensional Visualization of Earthquakes over Space, Time and Feature Space
Dzwinel W., Yuen D.A., Boryczko K. — Cluster Analysis, Data-Mining, Multi-dimensional Visualization of Earthquakes over Space, Time and Feature Space



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Cluster Analysis, Data-Mining, Multi-dimensional Visualization of Earthquakes over Space, Time and Feature Space

Авторы: Dzwinel W., Yuen D.A., Boryczko K.

Аннотация:

A novel technique based on cluster analysis of the multi-resolutional structure of earthquake patterns is developed and applied to observed and synthetic seismic catalogs. The observed data represent seismic activities situated around the Japanese islands in the 1997-2003 time interval. The synthetic data were generated by numerical simulations for various cases of a heterogeneous fault governed by 3-D elastic dislocation and power-law creep. At the highest resolution, we analyze the local cluster structure in the data space of seismic events for the two types of catalogs by using an agglomerative clustering algorithm. We demonstrate that small magnitude events produce local spatio-temporal patches corresponding to neighboring large events. Seismic events, quantized in space and time, generate the multi-dimensional feature space of the earthquake parameters. Using a non-hierarchical clustering algorithm and multidimensional scaling, we explore the multitudinous earthquakes by real-time 3-D visualization and inspection of multivariate clusters. At the resolutions characteristic of the earthquake parameters, all of the ongoing seismicity before and after largest events accumulate to a global structure consisting of a few separate clusters in the feature space. We show that by combining the clustering results from low and high resolution spaces, we can recognize precursory events more precisely and decode vital information that cannot be discerned at a single level of resolution.


Язык: en

Рубрика: Науки о земле/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 14

Добавлена в каталог: 29.07.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте