Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View
Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Quantum Physics: A Functional Integral Point of View

Авторы: Glimm J., Jaffe A.

Аннотация:

This first Glimm-Jaffe edition as well as the extended second edition are the only textbook treatments of the Osterwalder-Schrader axioms and reconstruction theorem. The mathematically more tractable and usually convergent Euclidean theory is obtained by Wick rotating the time coordinate axis by 90 degrees (i goes to -1) in the Feynman Path Integral so that quantities (Green function integrals) arising from its expansion become exponentially damped and convergent rather than oscillatory. Under what conditions can we get the Feynman amplitudes in Minkowskian spacetime from these Euclidean quantities. This of course is the Osterwalder-Schrader theory. A thorough grounding in functional analysis and distribution theory at the level of the Reed-Simon texts(mostly volumes 1 and 2)is needed to understand the proofs. This material has lately found application in loop quantum gravity. For this alone either edition is worth having.


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2

Год издания: 1987

Количество страниц: 558

Добавлена в каталог: 08.03.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Phase, separation      470
Phase, space      3ff 31
Poisson bracket      6 276
Poisson process      119 120
Polarization identity      204 258
Polymer expansion      398ff 402
Positive operators      129ff
Pressure      28 29 35 37 65 77ff 230
Probability measure      see "Minlos' theorem" "Functional
Pure state      see "State" "Phase" "Equilibrium
Quadratic perturbation      206ff 211ff
Quantum      see "Field"
Quantum, number      25
Quantum, theory      3ff 94ff
Random path representations      419ff
Random walks      119 225 419 421
Reconstruction theorem, quantum field theory      98ff 379ff
Reconstruction theorem, quantum mechanics      94ff
Reflection      54 164 165 262 265 395
Reflection group      237
Reflection invariance      177ff 234ff
Reflection, bounds, multiple      60 236ff 242ff 252 254 261 265 266 322 325 337 396
Reflection, bounds, nonsymmetric multiple      242ff 261ff 265
Reflection, positivity      55 90 92ff 101 104 160 161 177ff 234ff 237 238 239 240 242ff 250 252 262 337 396
Reflection, positivity, gauge theory      446ff
Relative form bound      131
Renormalizable      218 219
Renormalization      19 77 157 180ff 202 212 215ff 296ff 300 316 356 460 463
Renormalization, charge      112 299 300 355
Renormalization, field strength      216 282 297ff 342 344 469
Renormalization, group      78 339 342 348 399 407 448
Renormalization, mass      297 300 398 401
Renormalization, transformation      447ff 454ff
Renormalization, vacuum      157 296 300
Riesz representation theorem      124 126
Rotator model      71 86ff 330ff
S matrix      295ff see
Scale transformation      162 174 199 307 326
Scaling      118 343
Scaling, hyperscaling      350 351
Scaling, limit      119 344 353ff
Scattering      22 23 215 295ff 356 461 462
Scattering, asymptotic completeness      23 274 275
Scattering, Bethe — Salpeter equation      188 275 300ff
Scattering, Haag — Ruelle theory      286ff
Scattering, time-dependent methods      273ff
Scattering, time-independent methods      292ff
Schroedinger equation      7 8
Schroedinger hamiltonian      94 111
Schroedinger picture      7 8 9
Schroedinger representation      10 12 13 14 16 19 20 23 25 93 244 246
Schwartz distribution      53 54 90 282 286 353
Schwartz space      12
Schwinger functions      96
Self-adjoint operator      126 127
Semiclassical      76ff
Series expansion      37ff 211ff 339 356ff see
Sigma model      437
Skeleton inequalities      432
Soliton      85 86 274 317 470ff
Spectral theorem      125ff
Spin      10 11 27 57 69ff 81 84 86 115 116 157 160 308 309 330
Spin wave      86
Spin, two component      71ff 86ff 330ff 333ff
Spontaneous magnetization      80 81 336
Stability of matter      22 38 39 98
State      6 7ff see "Ground "Vacuum
State, equation of      29 35
State, mixed      75 394
State, particle      86
State, pure      7
State, scattering      23 275 300
State, space      31
Statistical mechanics      6 28ff 75ff
Stochastic differential equations      153ff
Stochastic integrals      150ff
Superrenormalizable      218 219 255 281 284 296 316
Superstring theory      437—438
Supersymmetry      438
Symmetric operator      126 127
Symmetry breaking      78ff
Symmetry unbroken      86ff 330ff see uniqueness
Temperature      32ff
Thermodynamic limit      22 32 34
Trace class      132ff
Transfer matrix      74 87 94 96 234 347
Translation of a Gaussian measure      207
Translation of a non-Gaussian measure      208
Tree, decay      410ff
Tree, graphs      406ff
Tree, maximal      449 455
Truncated functions      63 286
Tunneling      85
Ursell function      63
VACUUM      see "Renormalization"
Vacuum bubbles      401
Vacuum energy      415
Vacuum expectation value      132 286 287
Vacuum nonuniqueness      320 356 399
Vacuum state      95 98 115 116
Vacuum uniqueness      51ff 92 98 99 316 317 393ff 399
Verification of axioms      see "Axioms"
Vertex      182ff 213 217 218 348 354 see "Renormalization charge"
Vortex      37 86ff 331
Wave operator      277 280
Wick constant      188 206 223
Wick dots      109 231
Wick monomials      109 186 189 255
Wick order      16 106 180ff 193 195 199 203 204 210 211 212 227 230 232 250 259 297 320 327 328 413
Wick ordering group      319
Wick polynomials      188 206 256 257 259 358 467
Wick products      183ff 186 202ff
Wick reorder      166 193 194 204ff 326 329
Wiener measure      43ff 48 137 138 168 225 245 369ff
Wiener path, Hoelder continuity      142
Wightman      97ff 102 119 265 275 282 283 287 379ff
Wightman axioms      98ff 379ff
Wightman functions      98ff
Wigner's Theorem      9
XY model      71 86ff 330ff
Yang — Mills equation      439
Yang — Mills theory      120 157 215 218 437ff 457ff
Yukawa      120 157 215 355 463ff
Zero mode      456
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте