Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Singular limits of dispersive waves 
Àâòîðû:   Ercolani N.M., Gabitov I.R., Levermore C.D. 
Àííîòàöèÿ:  In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, and forced by gravity and surface tension. As a result, water with a free surface is generally considered to be a dispersive medium.
 Surface gravity waves, moving under the forcing by gravity, propagate faster for increasing wavelength. For a given wavelength, gravity waves in deeper water have a larger phase speed than in shallower water. In contrast with this, capillary waves only forced by surface tension, propagate faster for shorter wavelengths.
 Besides frequency dispersion, water waves also exhibit amplitude dispersion. This is a nonlinear effect, by which waves of larger amplitude have a different phase speed from small-amplitude waves.
 
ßçûê:   
Ðóáðèêà:  Ôèçèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  1994 
Êîëè÷åñòâî ñòðàíèö:  369 
Äîáàâëåíà â êàòàëîã:  16.02.2014 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                          pair       79    
 -function       70   275   283    
Abel hierarchy       84—87    
Abel transform        78   80   107   177    
Abelian differential        3   8   9   16   106—108   115   162    
Abelian integral        108   109   288    
action        166   173   216   241   274   278   305—306   311    
Adams — Bashfort method       333—335   337   341    
Adiabatic        105   113   216   274    
Angle-representation       276   279   281   283—288    
Asymptotic ansatz       113   114   179    
Atomic measure        251—253    
Attractor        39—40   52    
Autocorrelation function        183—201    
Averaged Whitham equation for Toda lattice       5—10    
Backlund transformation        118   146    
Baker vector/Baker function       121   122    
Baker — Akhiezer function        9   79—82   109   112   118   120   177    
Benney equations        53   55—59   61   65   143—155   168   170    
Benney hierarchy       61—62   65    
Bifurcation        39—40   48   305   306   309   311    
Billiards        219—234    
Binary oscillation       331—332; see Period-two oscillation    
Boltzmanfi type equation       220   225   233    
Boussinesq equation        61   64—65    
Branch points of a Riemann surface        3   8   10   11   16   41   56   59   65   70   71   74   76   80   84   106—108   110   111   113—115   143   179    
Breather        40—51   283    
Brownian motion        233    
Bunimovich — Sinai theorem       219   220   233    
Burger’s Equation        28   136—140   157   160   161   329   330    
C. Neumann problem        279   285   286   288    
Cantor set        301   304   305   310   311    
Cauchy’s kernel        65   79—82    
Caustic        23—24   34—35   240—243   279    
Central limit theorem        233    
Chaos / chaotic        40   105   331   336   339   342    
Characteristic speed/velocity       4   5   14   15   64    
Christophel symbols       144    
Chromatography        144   145   153    
Compatibility conditions in shock dynamics       357—359    
Complex structure, deformation of        70   73   77   78    
Complex tori        75    
Configuration space        205    
Conformal field theory        70    
Connection        77   274   283    
Conoidal waves       203   255    
Conservation laws        5ff   37   68   90   94   145   146   149—153   236   240   330   331   332   345   357   360    
Contact discontinuity        329   333   336   341   342   345    
Contraction principle        351    
Contravariant derivative        290    
Convection        315   316    
Couette flow        315   316    
Covariant derivative        290    
Critical magnetic field        183—201    
Curvature        144    
Cusp / cuspidal       119   126   133   139—140    
Cuts        62—64    
CYCLE        42—43   71—72   75   106   108   216   282    
Darboux transformations        117—134    
Defocusing NLS equation       21—27   235—238   242—245   248   249   251   276   279   283    
Degree of mapping Z        1    
Diffusion coefficient        219   220   226   228   233   234    
Diffusion equation        219   226   228    
Dirac operator        246    
Dispersionless Lax equations       61—66    
Dispersionless limit of integrable systems       165—174    
Dispersive hydrodynamics       89—104    
Divisor        120   122   125   177   179   297   302   304    
Doppler frequency        324   325    
Dressing        174   177    
Driver amplitude       44—45    
Driver frequency       43    
Dubrovin equations       107   114—115    
Duhamel integral        212    
Dyson formula        260    
Egorov class       145—147    
Eikonal equation        22   28   34   35   36   240   241    
Einstein — Kubo formula       233—234    
Electrophoresis        144   145   153    
Ellipsoid        276   277    
Elliptic curve        120   122    
Elliptic functions        68   265    
Elliptic integrals        68   74   94—96   103   135   137   143   160   204   265   267   269    
Energy density        316    
Energy-phase modulation equations       43—44    
Entropy solution of Hopf equation       333    
Euler hydrodynamics equations        94    
Euler system        237   238   254    
Euler — Poisson type equation       90   96   136—139    
Evolution equations        37   111    
Finite horizon property of a billiard       222—223   228   230   233—234    
Finite-gap        69—70   78—80   82—84   175—180   204   205   208   209   211   215   216   289    
Flaschka’s form of Toda lattice equations       6    
Focusing NLS equation       27—37   235   236   242—245   249   283    
Fractional power        62    
Free energy        316   319    
fundamental frequency        300   304    
Galilean invariance of NLS       28    
Galilei transformations        145—147   149   151   153    
Gas dynamics        22   169   173    
Gas law        22   23    
Gauge invariance / gauge transform       168   172    
Gauss hypergeometric function        100    
Gelfand — Dikii “fractional power” ansatz       62    
Gelfand — Levitan integral equations       177    
Generalized hodograph method       89   90—94   99   109   154    
Genus        2   4   5   8   13   16   17   70   71   75   81   106   118   175   254   267   269    
Geodesic flow, ergodic property of       219    
Geometric phases        273—295    
GHM       see Generalized hodograph method    
Goursat problem        90   97   101    
GP problem        see Gurevich — Pitaevsky problem    
Grassmanian        118—120    
Green’s formula        231    
Green’s function        304    
Gurevich — Pitaevsky problem       89   90—94   96—99   203    
Hamilton — Jacobi equation        63   65   173   174   213    
Hamiltonian        61—62   105—107   112   173   174   183   275—280   286   287   289   290   298   299   305    
Hamiltonian flow        105   114   276   278   279   285   286   287    
Hamiltonian system        68   105   107   143—146   150—153   167   173   216   236   257   273   278   280   281   285—288   298   302    
harmonic oscillator        299—300    
Heat transfer        316    
Helix        320   326    
Hilbert space        303    
Hilbert transform        254   350    
Hilbert — Schmidt operator        230    
Hodograph        4   16   61   63   68—69   89   90—94   99   102   103   109   136—140   154    
Holomorphic differential        42   72   73   75   77   106   177    
Homoclinic        40   273—275   279   285—288    
Hopf equation        249   329   331   333—337   341—344   359    
Hydrodynamic symmetries       92   149    
Hydrodynamic-type equations/systems       53   67   68   89   143   145   149—154   225    
Hyperelliptic        70—78   80   106   126   175   204   209   211   215   276    
Hypergeometric equation        99    
Hypergeometric function        100    
Integrable / nonintegrable numerical scheme       329   331   336   341   342   345    
Integrable system        165—174    
Invariant tori        105   216   276   279   300   302    
Inverse scattering problem method        53—59   61   135   167   170   176   178   246   248   251   259   348    
Inverse scattering transform        67   69   79   81   249    
Ising chain        183—201    
Isospectral symmetries       79—82    
ISP method       see Inverse scattering problem method    
Its — Matveev formula       175   204    
Jacobi  -function       204    
Jacobi identity        144    
Jacobi problem        286   288    
Jacobi transformation        267    
Jacobi variety        273   274   279   281   283   286   289    
Jacobian        106    
Jacobian matrix        332    
Jost functions        54    
Kac — van Moerbeke lattice       331   341   342    
Kadomtsev — Petviashvili equation        67   69   78—84   123   132   167—168    
Kadomtsev — Petviashvili equation, dispersionless       167—168    
Kadomtsev — Petviashvili equation, finite-gap inverse scattering transform for       81    
Kadomtsev — Petviashvili equation, finite-gap solutions       69   78—79   82—84    
Kadomtsev — Petviashvili equation, isospectral symmetries       79—82    
Kadomtsev — Petviashvili equation, Lax pair for       81    
Kadomtsev — Petviashvili equation, nonisospectral symmetries       82—84    
KAM theory        see Kolmogorov — Arnold — Moser theory    
KdV equation, see Korteveg — de-Vries equation KdV functions       212    
KdV hierarchy        84   347—356    
KdV hydrodynamics       89   91    
KdV — Whitham problem       2   3    
KdV — Whitham problem vs. Toda — Whitham problem       2    
kinetic energy        305   306   310    
KN equation        see Krichever — Novikov equation    
Kolmogorov — Arnold — Moser theory        114   180   205   302    
Kolmogorov — Petrovsky — Piskunov problem       322    
Korteveg — de-Vries equation       2   4   53—55   61   64   67—88   89   90—93   95   96   119   126—128   131—133   143—155   157   162   163   175—181   203   205—209   216   238   248   249   259   275—280   284—291   298   330   345   347-356    
Korteveg — de-Vries equation,   pair for       79    
Korteveg — de-Vries equation,  -equation for       53   55    
Korteveg — de-Vries equation, averaged       4   68   70   143—155    
Korteveg — de-Vries equation, dispersionless       4   53—55   61   64   180    
Korteveg — de-Vries equation, finite-gap solutions       69   79—80   82—84   175—180   208   209   216    
Korteveg — de-Vries equation, isospectral symmetries       79—82    
Korteveg — de-Vries equation, Lax pair for       79    
Korteveg — de-Vries equation, linearized       206    
Korteveg — de-Vries equation, moving waves       67    
Korteveg — de-Vries equation, nonisospectral symmetries of       67—88    
Korteveg — de-Vries equation, quasi-periodic solutions       4    
Korteveg — de-Vries equation, reflecting coefficient for       54    
Korteveg — de-Vries equation, shock problem for       176—179    
Korteveg — de-Vries equation, symmetries of       69    
Korteveg — de-Vries equation, Tsarev equations for       90   162    
Korteveg — de-Vries equation, wave breaking problem for       89   90—93    
Korteveg — de-Vries equation, weak dispersion limit of       2   4    
kp       see Kadomtsev — Petviashvili equation    
KP flow        117   118   125    
KP hierarchy        119    
KP vertex operator        130    
Krasnoselskii theorem        306    
Krichever — Novikov equation       119   127   131—133    
Krichever — Novikov’s formalism       120   123    
Krichever’s scheme       109    
Kruskal symmetries       149   150   152    
Kuzmak — Whitham averaging ansatz       105   114    
Lagrangian        173    
Lagrangian submanifold        278   280   281   286   289    
Laminar state       315   316    
Laplace integral        261    
Laplace — Beltrami type operator       290    
Lax entropy        237    
Lax equations        61—66   167    
Lax equivalence theorem        227   233    
Lax pairr       6   79   81   257    
Lax — Levermore minimizer       157—164    
Lax — Levermore problem       203    
Lax — Levermore — Venakides theory       14   135   162    
Legendre transform        305    
Lie algebras        289    
Lie derivative        77    
Line bundle        118   120—122   126    
Linear fractional transformation        123   127    
Linear stability        318—319    
Liouville equation        233—234    
Liouville theorem        186    
Liouville tori        105—116    
Lorentz gas of hard spheres       219—227   229—230    
Lorentz gas with accomodation reflection       221—223   227—228   230-233    
Lyapounov functional        316    
Lyapounov theorem        316    
Lyapounov — Schmidt decomposition       302   304—305    
Magnetic field        183—201    
Markov partition        219   233    
Maslov method       289    
Modulation equations        27—28   37   39—52   89   331   333   342   345    
Moduli space        76   78   273    
monodromy        273—295    
Moving frame        258    
Multi-phase averaged system       135   143   149    
Multifrequency averaging theory       203—217    
Multiphase asymptotics       204   215    
Nash — Moser method       297   302   304    
Neumann system       105   111   112   114    
NLS equation        see non-linear Schr dinger equation    
Non-linear Schr dinger equation       21—38   55   61   93—95   169   180   235—255   276   279—281   283   291   298   328    
Non-linear Schr dinger equation, defocusing       21—27   89   93—94   235—238   242—245   248   249   251   276   279   283    
Non-linear Schr dinger equation, focusing       27—37   235   236   242—245   249   283    
Non-linear Schr dinger equation, Galilean invariance of       28    
Non-linear Schr dinger equation, semiclassical theory of       21—37   235—255    
Non-linear waves        297—313    
Nondissipative shock waves       89—92   97   98   99   102    
Nonisospectral integrable equations       69    
Nonisospectral symmetries       78—79   82—87    
Nonlinear wave equation        299   303   305    
NSW        see Nondissipative shock waves    
Number density        220—221   223—225   228   233    
Numerical scheme        329   342    
Optical fibers        24—27    
Optical pulses        24    
Optical shocks        21—37    
Oscillations arising in numerical experiments       329—346    
Painleve equation        105    
Parabolic structure        121   122    
Pauli matrices        183    
Period matrix        41—43   78    
Period-two oscillations       331—333   336—345    
Periodic solutions        297   299   300—302   304   307   310    
Perturbed modulation equations, numerical integration of       44—51    
Phase space        220   276   279   280   297   302    
Poisson bracket        62   144   174   236   247    
Potential        80   81   90   94—96   105   107   112   150   177   179   211   235   236   240   299   305—307   311    
Potential metric       146   151—153    
Pre-chaotic       40   52    
Presoliton solutions       291    
Principle of least action        305—306   311   312    
Quadric        274   276   288    
Quasi-periodic geodesic       277   279    
Quasi-periodic solutions        286   291   297    
Quasi-simple wave       89   90   92   99—103   367    
Quasiclassical limit        53—59   207    
Quasimomentum        72   80   211    
Reflection laws        219—222   234    
Regularization of integrals        53   57    
Resonance        105   203—217   297—313    
Resonant group        300—302   304    
Reynolds number        315    
RH problem        see Riemann — Hilbert problem    
Riccati equation        54   124    
Riemann (diagonal, characteristic) form       68   84   89   254    
Riemann bilinear relations        72—74   268    
Riemann constants        78   81    
Riemann invariant form of       61    
Riemann invariants        22   62   68—70   92   143   238   239   249   255    
Riemann manifold        290    
Riemann metric        290    
Riemann problem        75—78    
Riemann surface        3   8   10   11   16   41—43   56   59   65   70—78   80   81   112   143   146   216   254   269   274   276   280   282—284   286   287   289    
Riemann surface, branch points of       3   8   10   11   16   41   56   59   65   70   71   74   76   80   106—108   110   111   143    
Riemann surface, cycles on       42—43   71—72   106   108   282    
Riemann surface, deformations of       75—78    
Riemann surface, differentials on        71—75   106    
Riemann surface, genus of        70   71   75   81   106   254   269    
Riemann surface, local parameter       71    
Riemann surface, matrix of periods       78    
Riemann surface, moduli space of        75—78    
Riemann theta function        41   78   106   112   113   118   204   211    
Riemann wave        92   99    
                            
                     
                  
			 
		          
			Ðåêëàìà