Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
SQL Server Data Mining: Plug-In Algorithms
SQL Server Data Mining: Plug-In Algorithms



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: SQL Server Data Mining: Plug-In Algorithms

Аннотация:

Microsoft SQL Server Analysis Services 2000 Service Pack 1 allows the plugging in ("aggregation") of third-party OLE DB for Data Mining providers on Analysis
Server. Because this aggregation is at the OLE DB level, third-party algorithm developers using SQL Server 2000 SP1 have to implement all the data handling,
parsing, metadata management, session, and rowset production code on top of the core data mining algorithm implementation.
By contrast, SQL Server 2005 Data Mining allows aggregation directly at the algorithm level. Although this restricts what the third-party algorithm developer
can support in terms of language and data types, it frees the developer from implementing all the additional layers described above. It also allows for much
deeper integration with Analysis Services, including the ability to build OLAP mining models and data mining dimensions. We use the term "plug-in algorithms" to
describe third-party algorithms that plug into the SQL Server 2005 Analysis Server (hereafter referred to as "Analysis Server") and appear, in all respects, like
native algorithms to users.
Describes how SQL Server 2005 Data Mining allows aggregation directly at the algorithm level. Although this restricts what the third-party algorithm
developer can support in terms of language and data types, it frees the developer from having to implement data handling, parsing, metadata management,
session, and rowset production code on top of the core data mining algorithm implementation.


Язык: en

Рубрика: Computer science/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2004

Количество страниц: 8

Добавлена в каталог: 28.06.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте