Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Narayanan A., Keedwell E., Savic D. — Data mining neural networks with genetic algorithms
Narayanan A., Keedwell E., Savic D. — Data mining neural networks with genetic algorithms



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Data mining neural networks with genetic algorithms

Авторы: Narayanan A., Keedwell E., Savic D.

Аннотация:

It is an open question as to what is the best way to extract symbolic rules from trained neural networks in domains involving classification. Previous approaches based on an exhaustive analysis of network connection and output values have already been demonstrated to be intractable in that the scale-up factor increases exponentially with the number of nodes and connections in the network. A novel approach using genetic algorithms to search for symbolic rules in a trained neural network is demonstrated in this paper. Preliminary experiments involving classification are reported here, with the results indicating that our proposed approach is successful in extracting rules. While it is accepted that further work is required to convincingly demonstrate the superiority of our approach over others, there is nevertheless sufficient novelty in these results to justify early dissemination. (If the paper is accepted, the latest results will be reported, together with sufficient information to aid replicability and verification.)


Язык: en

Рубрика: Computer science/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Количество страниц: 12

Добавлена в каталог: 17.06.2006

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте