Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Powell W.B. — Approximate dynamic programming: Solving the curses of dimensionality
Powell W.B. — Approximate dynamic programming: Solving the curses of dimensionality



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Approximate dynamic programming: Solving the curses of dimensionality

Автор: Powell W.B.

Аннотация:

A complete and accessible introduction to the real-world applications of approximate dynamic programming

With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems.

Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues.

With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming:

  • Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects

  • Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics

  • Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms

  • Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book

Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.



Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 487

Добавлена в каталог: 23.12.2013

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Stepsize, stochastic, Trigg      194
Stochastic approximation procedure      181
Stochastic approximation, Martingale proof      215
Stochastic approximation, older proof      212
Stochastic decomposition      372
Stochastic gradient algorithm      181
Stochastic programming      365
Stochastic programming, Benders      370
Submodular      67
Superadditive      68
Supermodular      67-68
Supervisor      244
Supervisory learning      244
Supervisory processes      158
Synchronous dynamic programming      114
System model      30
Taxonomy of ADP algorithms      296
Temporal-difference learning      279
Temporal-difference learning, infinite horizon      307
Tic-Tac-Toe      242
Time      132
Transformer replacement      32
Transition function      3 20 30-31 40 159
Transition function, attribute transition      164
Transition function, batch      31
Transition function, resource transition function      162
Transition function, special cases      165
Transition matrix      47 52
Two-stage stochastic program      366
Uncertainty bonus      344
Upper confidence bound sampling algorithm      338
Value function approximation      94 107
Value function approximation, aggregation      226
Value function approximation, batch process      257
Value function approximation, cutting planes      365
Value function approximation, error measures      315
Value function approximation, leveling      355
Value function approximation, mixed strategies      252
Value function approximation, neural networks      253
Value function approximation, recursive methods      246
Value function approximation, regression      237
Value function approximation, regression methods      362
Value function approximation, SPAR      357
Value function approximation, tic-tac-toe      242
Value function approximations, gradients      352
Value function approximations, linear approximation      353
Value function approximations, piecewise linear      355
Value function approximations, SHAPE algorithm      359
Value iteration      57
Value iteration, bound      60
Value iteration, error bound      79
Value iteration, Gauss — Seidel variation      58
Value iteration, infinite horizon      305
Value iteration, monotonic behavior      59
Value iteration, pre-decision state      276
Value iteration, proof of convergence      74
Value iteration, proof of monotonicity      77
Value iteration, relative value iteration      58
Value iteration, stopping rule      57
Variance of estimates      195
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте