Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Hsiao C. — Analysis of panel data
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Analysis of panel data
Àâòîð: Hsiao C.
Àííîòàöèÿ: Review
"Cheng Hsiao has made many significant and important contributions to panel data econometrics, both methodological and applied, beginning with his 1972 dissertation, in numerous articles, and in his masterful and magisterial 1986 monograph, long a standard reference and popular graduate text. (cont.)
Not only has Hsiao significantly revised the material covered in his original monograph, he has added major new chapters on nonlinear panel models of discrete choice and sample selection, and included new material on the Bayesian treatment of models with fixed and random coefficients, pseudopanels, simulation methods of estimation, and more extensive treatment of dynamic models. Throughout, Hsiao provides applied examples, which greatly enhance the reader's understanding and intuition. The clarity of his exposition and organization is exemplary. All of us who work in the field of panel data econometrics have been, and will now more than ever continue to be in Hsiao's debt." Marc Nerlove, University of Maryland
"The literature on panel data modeling has seen unprecendented growth over the past decade and Cheng Hsiao, himself one of the leading contributors to this literature, is to be congratulated for providing us with a comprehensive and timely update of his classic text. This version not only presents a substantial revision of the 1986 edition, but also offers major additions covering non-linear panel data models dealing with useful overviews of unit root and cointegration in dynamic heterogeneous panels. It should prove invaluable to students and teachers of advanced undergraduate and graduate economic courses." Hashem Perasan, Trinity College, Cambridge
"The first edition of Analysis of Panel Data by Cheng Hsiao has been necessary reading and a landmark for 15 years. The revised and much expanded second edition splendidly integrates the important new developments in the field. One can be sure it will stay a landmark for 15 years to come." Jacques Mairesse, ENSAE, France
"Cheng Hsiao has done a great service to the profession by expanding his highly successful first edition to include the important results that have been obtained by him and other researchers since the publication of the first edition. Escpecially noteworthy in this edition is the application of panel data analysis to qualitative response and sample selection models. Cheng has admirably succeeded in presenting the mathematical results both rigorously and lucidly. Many theoretical results are illustrated by interesting empirical examples. This edition should prove to be an extremely useful reference for the experts in the field as well as graduate students." Takeshi Amemiya, Stanford University
Book Description
Panel data models have become increasingly popular among applied researchers due to their heightened capacity for capturing the complexity of human behavior, as compared to cross-sectional or time series data models. This second edition represents a substantial revision of the highly successful first edition (1986). Recent advances in panel data research are presented in an accessible manner and are carefully integrated with the older material. The thorough discussion of theory and the judicious use of empirical examples make this book useful to graduate students and advanced researchers in economics, business, sociology and political science.
ßçûê:
Ðóáðèêà: Computer science /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Èçäàíèå: Second edition
Ãîä èçäàíèÿ: 2003
Êîëè÷åñòâî ñòðàíèö: 384
Äîáàâëåíà â êàòàëîã: 30.05.2006
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Acceleration sales model 22
Adaptations in behavior 268—269
Advantages of panel data competing hypotheses 312—313
Advantages of panel data degrees of freedom and multicollinearity 311—312
Advantages of panel data distributed-lag model estimation 5
Advantages of panel data dynamics of change 3—4
Advantages of panel data estimation bias reduction 313—316
Advantages of panel data measurement errors 5—6
Advantages of panel data micro foundations for aggregate data analysis 316
Advantages of panel data two-dimensional nature of data 7—8
Aitken estimator 123 150 155 165 320
Analysis of covariance 14—26
Analysis of covariance descriptive model 14—15
Analysis of covariance example from Kuh 21—26
Analysis of covariance main steps in 15
Analysis of covariance one-way 150
Analysis of covariance problems in tracing heterogeneity 20—21
Analysis of covariance regression over individuals 15—18 23 30—33
Analysis of covariance regression over time 18—20 24—25
Analysis of covariance summary of tests for homogeneity 19
Analysis of variance 14
Argument Dickey — Fuller (ADF) t-ratios 301
Attrition probability 234—238
Autoregressive models in short panels vector autoregressive models 268 275
Autoregressive moving-average (ARMA) 157
Bandwidth parameter 231 249
Bayes estimators 146 170 177—180
Bayes solutions 168—170 174—175
Bayes updating formula 175
Bernoulli models 207
Best linear unbiased estimator (BLUE) in variable-coefficient models 154—155 164
Best linear unbiased estimator (BLUE) in variable-intercept models 31 33 35 45 53 55
Best linear unbiased predictor (BLUP) 170
Between-group estimators 37
Bias attrition 239
Bias Bayes estimator 178—180
Bias covariance estimator 72
Bias fixed-effects probit models 198—199
Bias from dynamic structure 315—316
Bias generalized least-squares estimator 85
Bias generalized method of moments 90 101—102
Bias heterogeneous intercepts 9—10
Bias income-schooling model 113—114 127
Bias IV estimator 101—102
Bias maximum likelihood estimation 91—93 101—102 211
Bias measurement errors 5 304—309 316
Bias minimum-distance estimator 101 —102
Bias OLS estimator 73—74
Bias omitted-variable 313—315
Bias selectivity 9—11 254
Bias simultaneity 316
Box-Jenkins method 163
Capital intensity 183
Cash-flow effect 26 180—181
Categorical models discrete data cell-mean corrected regression models 16—17 23
Censored model, definition truncated and censored models 225
Chamberlain approach 60—65
Chamberlain minimum-distance estimator 83
Clustering structure 302—304
Cobb — Douglas production functions 28—29
Cohorts 283—285 329
Cointegration rank 323
Competing hypotheses 312—313
COMPUSTAT data 181
Conditional vs. marginal likelihood functions likelihood functions 43—49
Correlations, arbitrary 103—104
Covariance (CV) estimator dynamic panel data models 71—72
Covariance (CV) estimator random-vs. fixed-effects models 69—70
Covariance (CV) estimator simple regression with variable intercept models 35 53 55
Covariance transformation, measurement error and 305—306
Cramer — Rao bounds 50
Cross-sectional data consisting of entire population 329
Cross-sectional data difficulties of describing dynamics of change from 4
Cross-sectional data pooled with time-series data 285—290 329
Cross-sectional data repeated 283—285
Cross-sectional dependence 309—310
Cumulative normal distribution 190
Degrees of freedom 311—312
Depreciation rate 95
Diagonal-path limits approach 296
Discrete data dynamic discrete data models definition 188
Discrete data dependent variable assuming only two values 188—189
Discrete data discrete-response models 188—193
Discrete data dynamic models 206—224
Discrete data existence of a consistent estimator. 195—198
Discrete data female employment example 193 218—222
Discrete data fixed-effects models 194—199
Discrete data household brand choices example 221—224
Discrete data maximum likelihood estimator 194—195
Discrete data Monte Carlo evidence 198—199
Discrete data parametric approach to static models with heterogeneity 193—202
Discrete data random-effects models 199—202
Discrete data semiparametric approach to static models 202—206
Discrete data state dependence vs. heterogeneity 216—218 222
Discrete data unemployment theory 216
Distributed lag estimation in short panels 268—279
Distributed lag estimation in short panels common assumptions 270—271
Distributed lag estimation in short panels, estimation and testing 277—279
Distributed lag estimation in short panels, general distributed-lag model 269 270 271
Distributed lag estimation in short panels, identification using lag coefficients 275—277
Distributed lag estimation in short panels, identification using the exogenous variable 271—275
Distributed lag estimation in short panels, progressive nature of adaptations 268—269
Distributed lag estimation in short panels, rates of return example 278—279
Distributed-lag models 5 269 270 271
Distributions, combination of normal 185—187
Dummy variables, least-squares least-squares dummy-variables
Dynamic censored Tobit models 259—265
Dynamic discrete data models 206—224
Dynamic discrete data models conditional probability approach 211—216
Dynamic discrete data models general model 106—108
Dynamic discrete data models, household brand choices example 221—224
Dynamic discrete data models, initial conditions 208—211
Dynamic discrete data models, state dependence vs. heterogeneity 216—218 222
Dynamic discrete data models, unemployment theory 216
Dynamic models with variable intercepts fixed-effects models; random-effects models 69—112
Dynamic models with variable intercepts, arbitrary correlations in the residuals 103—104
Dynamic models with variable intercepts, asymptotic covariance matrix derivation 111—112
Dynamic models with variable intercepts, covariance estimator 69—70 71—72
Dynamic models with variable intercepts, fixed-effects models 72 95—103
Dynamic models with variable intercepts, fixed-effects vector autoregressive models 105—111
Dynamic models with variable intercepts, initial conditions 70 85—86 90—92
Dynamic models with variable intercepts, maximum likelihood estimator 78—83
Dynamic models with variable intercepts, random-effects models 73—92
Dynamic models, bias induced by 315—316
Dynamic random-coefficient models 175—180
Dynamic sample selection Tobit models 265—267
Earnings dynamics example 265
Economic distance 310
Efficiency of estimates 317—318
Elasticity estimates 28—29
Electricity demand example 172—173
Employment examples female 193 218—222
Employment examples income-schooling model 113—114 127—128 136—138 313
Employment examples truncated or censored data 229—230
Employment examples unemployment theory 216
Employment examples wage equations 41—42
Endogenously determined sample selection model 253—255
Error terms Chamberlain approach 60—65
Error terms discrete-response models 192—193 206—207 220
Error terms quadratic loss functions 169
Error terms serially correlated 57—59
Error terms simultaneous-equations models 122—123 126 138
Error terms truncated and censored models 226 228
Error terms variable-coefficient models 146 153—155 160 167—170
Error-component three-stage least squares (EC2SLS) estimator 126 280
Error-component two-stage least squares (EC2SLS) estimator 123 126
Errors of measurement 5 304—309 316
Estimation bias 313—316
Europe, panel data sets from 1—3
European Community Household Panel (ECHP) 3 319
Event histories 328
Exogeneity, strict 43—44 49 69 70 95 104 203 265
Exogeneity, weak 95
Female employment examples 193 218—222
Filtering 158
Fixed-effects models 95—103
Fixed-effects models, discrete data 194 199
Fixed-effects models, efficiency of the estimates 317
Fixed-effects models, likelihood-based estimator and GMM relations 99—101
Fixed-effects models, logit models 327
Fixed-effects models, minimum-distance estimator 98—99
Fixed-effects models, omitted variable bias 314
Fixed-effects models, probit models 198—199
Fixed-effects models, random-vs. fixed-effects specification 101—103
Fixed-effects models, semiparametric two-step estimator 253—255
Fixed-effects models, transformed likelihood approach 96—98 101—103
Fixed-effects models, truncated regression 243—249
Fixed-effects models, vector autoregressive models 105—111
Food demand example 288—290
Gary income-maintenance project, attrition in 238—240 242
Gaussian quadrature formula 201
Generalized method of moments (GMM) estimator kernel-weighted 266—267
Generalized method of moments (GMM) estimator likelihood-based estimators and 99—101
Generalized method of moments (GMM) estimator, measurement errors 306—309
Generalized method of moments (GMM) estimator, random-effects models 86—90 95—96
Generalized method of moments (GMM) estimator, simple regression with variable intercepts 60
Generalized method of moments (GMM) estimator, simulated 294—295
Generalized method of moments (GMM) estimator, truncated or censored models 264—265
Generalized method of moments (GMM) estimator, vector autoregressive models 107—108
Generalized-least-squares (GLS) estimator dynamic random-effects models 84—85 323
Generalized-least-squares (GLS) estimator, multilevel structures 303
Generalized-least-squares (GLS) estimator, rotating data 281—282
Generalized-least-squares (GLS) estimator, simple regression with variable intercepts 35—38 45 53 55 58—59 320
Generalized-least-squares (GLS) estimator, simultaneous-equations models 117—118 125—126
Generalized-least-squares (GLS) estimator, variable-coefficients models 145—146 154 164 170
Gibbs sampler 177—178
Group membership matrices 304
Growth-rate regression model 6—7
Grunfeld investment function 147
Hausman test of misspecification 50—51 102 321
Hausman wage equations 42
Hausman — Wise model of attrition 237—240 242
Heckman sample selection correction 254
Heckman two-step estimator 227 230 236 241
Heckman — Willis model 219 221
Hermite integration formula 201
Heterogeneity bias 8—10
Heterogeneity female employment example 218—222
Heterogeneity problems in tracing 20—21
Heterogeneity state dependence and 216—218 222
Heteroscedasticity in random-effects models 89
Heteroscedasticity in simple regression with variable intercepts models 55—57
Heteroscedasticity in simultaneous-equations models 124
Heteroscedasticity in single-equation structural models 120 122
Heteroscedasticity in truncated or censored models 255
Heteroscedasticity in variable-coefficient models 148 156 162
Heteroscedasticity individual 320
Heteroscedasticity Lagrange-multiplier test 148 156 162 325
Heteroscedasticity unit-root tests 299
Hierarchical structure 302—304
Hildreth — Houck estimator 325
Honore — Kyriazidou estimator 223—224
Household brand choices example 221—224
Housing expenditure example 255—259
Identification dynamic random-coefficients models 326
Identification triangular system of simultaneous equations 127—129
Identification using prior structure of the lag coefficients 275—277
Identification using prior structure of the process of the exogenous variable 271—275
Incidental-parameters 48—49 81 95 96 107 194—196 204 244
Income elasticity example 285—286 289
Income-schooling model 113—114 127—128 136—138 313
Incomplete panel data 268—290
Incomplete panel data distributed lag estimation in short panels 268—279
Incomplete panel data, food demand example 288—290
Incomplete panel data, income elasticity example 285—286 289
Incomplete panel data, pooling of cross-section and time-series data 285—290
Incomplete panel data, pseudopanels 283—285
Incomplete panel data, rotating or randomly missing data 279—283
Independence of irrelevant alternatives 192
Individual time-invariant variables 27
Individual time-varying variables 27
Individual-mean corrected regression model 16—17
Information matrix (IV) 148—149 197
Initial conditions common vs. difference means 91
Initial conditions, dynamic discrete data models 208—211
Initial conditions, dynamic models with variable intercepts 70 85—86 90—91
Initial conditions, incomplete panel data 283
Initial conditions, likelihood functions and 90—92
Instrumental-variable (IV) estimator dynamic fixed-effects models 100
Instrumental-variable (IV) estimator dynamic random-effects models 85—86 95—96
Instrumental-variable (IV) estimator purged, in triangular simultaneous-equations models 130—133
Inverse gamma (IG) distribution investment functions analysis of covariance of 21—26
Investment functions variable-coefficient models 141—142 147 180—185
Investment functions, importance of increase in sales 26
Joint limits approach 296
Kalman filter 158—161
Kernel density functions 214 231—233 255
Kernel-weighted generalized method-of-moments (KGMM) estimator 266—267
Koyck lag model 276—277
Kronecker product of two matrices 54 321
Kyriazidou estimator 253—255 256 266
Labor supply, life-cycle 6
Lagged dependent variables 70 74 85
Lagrange-multiplier test for heteroscedasticity 148 156 162 325
Latent response functions 225 292
Latent variables 127
Least-absolute deviation (LAD) estimator 243—253
Least-squares dummy-variables (LSDV) dummy variables for omitted variables 30
Least-squares dummy-variables (LSDV) dynamic panel data models 71—72
Least-squares dummy-variables (LSDV) fixed-effects models 30—33
Least-squares dummy-variables (LSDV) random-effects models 37
Least-squares dummy-variables (LSDV) simultaneous-equations models 118
Least-squares dummy-variables (LSDV) variable-coefficient models 142
Least-squares estimators generalized-least-squares estimator joint generalized-least-squares estimation 116—119
Least-squares estimators ordinary 31—33 73—74
Least-squares estimators, pairwise trimmed 243—253
Least-squares estimators, symmetrically trimmed 228—229
Least-squares estimators, three-stage 64 83 124—126
Least-squares estimators, two-stage 120—123
Least-squares estimators, variable-coefficient models 146
Least-squares regression 5—6
Lee estimator 205—206
Likelihood functions maximum likelihood estimation
Likelihood functions GMM and 99—101
Likelihood functions pooled cross-sectional and time-series data 286—290
Likelihood functions, conditional vs. marginal 43—49
Likelihood functions, discrete-response models 190—192 194—198
Likelihood functions, dynamic discrete data models 209—211
Likelihood functions, fixed effects models 209
Likelihood functions, random-effects models 199—202 209
Likelihood functions, randomly missing data 283
Likelihood functions, rotating samples 280
Likelihood functions, testing initial condition hypotheses 90—91
Likelihood functions, transformed approach 96—98 101—103
Likelihood functions, truncated and censored models 226 230 237—238 240—242
Limited-information principle 120 122
Linear regression 296 314
Linear-probability models 189—190 195—196
Liquidity constraints example 180—185
Logistic distribution 190
Logit models 189—190 195—198 215 222—223 327
Long-haul long-distance service 171—172
Manheim Innovation Panel (MIP) 3
Manheim Innovation Panel—Service Sector (MIP-S) 3
Manski maximum score estimator 203—205 212 214
Manufacturing price equations 150—151
Markov processes 207—208 210—211 219—220 327
Maximum likelihood estimation (MLE) bias simulation evidence 91—93
Maximum likelihood estimation (MLE) consistency properties 80
Maximum likelihood estimation (MLE) discrete data models 191 194—196 217 219
Ðåêëàìà