Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Leondes C.T. — Computer techniques and algorithms in digital signal processing
Leondes C.T. — Computer techniques and algorithms in digital signal processing



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Computer techniques and algorithms in digital signal processing

Àâòîð: Leondes C.T.

Àííîòàöèÿ:

Covers advances in the field of computer techniques and algorithms in digital signal processing.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 424

Äîáàâëåíà â êàòàëîã: 08.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Auto-regressive models, linear prediction methods      3—5 13—14
Auto-regressive models, linear prediction methods, auto-regressive moving-average models versus      14—15
Auto-regressive moving-average models      see "Linear prediction methods frequency
Banzhaf sonograms, neural networks      319—323
Bayes' classifier, known channels      349—350
Beamformer, coherent signals      282—283
Blackman — Tukey methods, frequency estimation      2—3
Blind adaptive MAP symbol detection      339—405
Blind adaptive MAP symbol detection, channel and signal models      344—345
Blind adaptive MAP symbol detection, conclusions      396—397
Blind adaptive MAP symbol detection, introduction      341—344
Blind adaptive MAP symbol detection, metric pruning      380—382
Blind adaptive MAP symbol detection, reduced complexity MAPSD algorithms      365—382
Blind adaptive MAP symbol detection, reduced complexity MAPSD algorithms, LMS adaptation      366—372
Blind adaptive MAP symbol detection, reduced complexity MAPSD algorithms, LMS adaptation, fading channels      370—372
Blind adaptive MAP symbol detection, reduced complexity MAPSD algorithms, LMS adaptation, fading channels, simulation results      372
Blind adaptive MAP symbol detection, reduced complexity MAPSD algorithms, LMS adaptation, time-invariant channels      366—367
Blind adaptive MAP symbol detection, reduced complexity MAPSD algorithms, LMS adaptation, time-invariant channels, simulation results      367—370
Blind adaptive MAP symbol detection, reduced complexity MAPSD algorithms, metric pruning      380—382
Blind adaptive MAP symbol detection, reduced complexity MAPSD algorithms, suboptimal MAPSD with decision feedback      372—380
Blind adaptive MAP symbol detection, reduced complexity MAPSD algorithms, suboptimal MAPSD with decision feedback, algorithm      374—376
Blind adaptive MAP symbol detection, reduced complexity MAPSD algorithms, suboptimal MAPSD with decision feedback, algorithm, simulations      376—379
Blind adaptive MAP symbol detection, reduced complexity MAPSD algorithms, suboptimal MAPSD with decision feedback, feedback algorithm      379—380
Blind adaptive MAP symbol detection, sequence estimation versus symbol detection      346—351
Blind adaptive MAP symbol detection, sequence estimation versus symbol detection, Bayes' classifier for known channels      349—350
Blind adaptive MAP symbol detection, sequence estimation versus symbol detection, MAP decoders for known channels      350—351
Blind adaptive MAP symbol detection, sequence estimation versus symbol detection, ML and MAP sequence estimation      346—347
Blind adaptive MAP symbol detection, sequence estimation versus symbol detection, optimal MAPSD for known channels      347—349
Blind adaptive MAP symbol detection, TDMA signal recovery, dual-mode algorithm      382—396
Blind adaptive MAP symbol detection, TDMA signal recovery, dual-mode algorithm, EKFs on MAPSD filter bank      390—391
Blind adaptive MAP symbol detection, TDMA signal recovery, dual-mode algorithm, measurement model with timing offset      384—387
Blind adaptive MAP symbol detection, TDMA signal recovery, dual-mode algorithm, simulations      391—396
Blind adaptive MAP symbol detection, TDMA signal recovery, dual-mode algorithm, training mode adaptation of auxiliary EKF      387—389
Blind adaptive MAP symbol detection, time updates for blind MAPSD algorithm      398—400
Blind adaptive MAP symbol detection, unknown channels      352—365
Blind adaptive MAP symbol detection, unknown channels, blind algorithms for fading channels      364—365
Blind adaptive MAP symbol detection, unknown channels, blind MAP sequence estimation      352—353
Blind adaptive MAP symbol detection, unknown channels, blind MAP symbol detection      354—358
Blind adaptive MAP symbol detection, unknown channels, blind Viterbi algorithm      358 360
Blind adaptive MAP symbol detection, unknown channels, computer simulations      358 360—364
Burg algorithm, frequency estimation      11—13
Chaotic signal analysis, higher order statistics      105—154
Chaotic signal analysis, higher order statistics, bispectral analysis      142—149
Chaotic signal analysis, higher order statistics, bispectral analysis, bicoherence      144
Chaotic signal analysis, higher order statistics, bispectral analysis, definitions and properties      143—144
Chaotic signal analysis, higher order statistics, bispectral analysis, examples      146—149
Chaotic signal analysis, higher order statistics, chaos, characterizations      112—113
Chaotic signal analysis, higher order statistics, chaos, characterizations, attractor      112
Chaotic signal analysis, higher order statistics, chaos, characterizations, spectrum      113
Chaotic signal analysis, higher order statistics, chaos, characterizations, unpredictability      113
Chaotic signal analysis, higher order statistics, chaos, definitions      111—112
Chaotic signal analysis, higher order statistics, chaos, examples      113—117
Chaotic signal analysis, higher order statistics, conclusion      149
Chaotic signal analysis, higher order statistics, cumulants of random variables      107—111
Chaotic signal analysis, higher order statistics, cumulants of random variables, definitions      107
Chaotic signal analysis, higher order statistics, cumulants of random variables, estimation issue      110—111
Chaotic signal analysis, higher order statistics, cumulants of random variables, linear transformation      110
Chaotic signal analysis, higher order statistics, cumulants of random variables, moments      108—110
Chaotic signal analysis, higher order statistics, cumulants of random variables, properties      108
Chaotic signal analysis, higher order statistics, dimension estimation      126—142
Chaotic signal analysis, higher order statistics, dimension estimation, correlation dimension      126—129
Chaotic signal analysis, higher order statistics, dimension estimation, rank dimensions      129—134
Chaotic signal analysis, higher order statistics, dimension estimation, rank dimensions, Karhunen — Loeve expansion      130—131
Chaotic signal analysis, higher order statistics, dimension estimation, rank dimensions, local intrinsic dimensionality      129—130 133—134
Chaotic signal analysis, higher order statistics, dimension estimation, rank dimensions, local intrinsic dimensionality, fourth-order      136—137
Chaotic signal analysis, higher order statistics, dimension estimation, rank dimensions, local intrinsic dimensionality, higher order      134—136
Chaotic signal analysis, higher order statistics, dimension estimation, rank dimensions, local intrinsic dimensionality, independent component analysis      137—142
Chaotic signal analysis, higher order statistics, dimension estimation, rank dimensions, reconstructed phase-space      131—133
Chaotic signal analysis, higher order statistics, embedding      117—126
Chaotic signal analysis, higher order statistics, embedding, delays      118—126
Chaotic signal analysis, higher order statistics, embedding, delays, method      118—119
Chaotic signal analysis, higher order statistics, embedding, delays, optimum choice      119—126
Chaotic signal analysis, higher order statistics, fourth-order extensions      134—142
Chaotic signal analysis, higher order statistics, introduction      105—106
Chinese remainder theorem, number theory      163—164
CHOS ESPRIT, narrowband signals      272—274
CHOS MUSIC, narrowband signals      269—272
Cruz — Banjanin algorithm frequency estimation      15—18
Cumulants, chaotic signal analysis      107—111
Cumulants, chaotic signal analysis, definitions      107
Cumulants, chaotic signal analysis, estimation issue      110—111
Cumulants, chaotic signal analysis, linear transformation      110
Cumulants, chaotic signal analysis, moments      108—110
Cumulants, chaotic signal analysis, properties      108
Cumulants, cyclic, sensor array processing      266—268
Discrete cosine transform      181—184
EKF, auxiliary training mode adaptation      387—389
EKF, MAPSD filter bank      390—391
Embedding, chaotic signal analysis      117—126
Embedding, chaotic signal analysis, delays      118—126
Embedding, chaotic signal analysis, delays, method      118—119
Factored state variable description      86
Factorization technique      187—188
Filters, floating point digital      see "Roundoff noise floating
Filters, frequency sampling      see "Frequency sampling filters fixed
FIR filters, roundoff noise      86 92—93
Fourier transform, discrete      156—158
Fraser's algorithm, chaotic signal analysis      122—124
Frequency estimation      1—79
Frequency estimation, Blackman — Tukey methods      2—3
Frequency estimation, linear prediction methods, approximate maximum likelihood estimation      9—10
Frequency estimation, linear prediction methods, auto-regressive models      13—14
Frequency estimation, linear prediction methods, auto-regressive models, auto-regressive moving-average models versus      14—15
Frequency estimation, linear prediction methods, auto-regressive moving-average models      3—15
Frequency estimation, linear prediction methods, autocorrelation method      6—7
Frequency estimation, linear prediction methods, Burg algorithm      11—13
Frequency estimation, linear prediction methods, covariance method      7—8
Frequency estimation, linear prediction methods, moving-average models      3 4
Frequency estimation, linear prediction methods, Prony method      5—6
Frequency estimation, linear prediction methods, Prony method, extended      8—9
Frequency estimation, periodograms      1—2
Frequency estimation, quotient-difference algorithm, Cruz — Banjanin algorithm, first      15—17
Frequency estimation, quotient-difference algorithm, Cruz — Banjanin algorithm, second      17—18
Frequency estimation, quotient-difference algorithm, error analysis      52—73
Frequency estimation, quotient-difference algorithm, error analysis, conclusion      74—75
Frequency estimation, quotient-difference algorithm, error analysis, effect of alpha      67—70
Frequency estimation, quotient-difference algorithm, error analysis, extremely simplified      52—55
Frequency estimation, quotient-difference algorithm, error analysis, Maple Code      75—77
Frequency estimation, quotient-difference algorithm, error analysis, Maple Code, two-sinusoid case      62—67
Frequency estimation, quotient-difference algorithm, error analysis, matrix inversion algorithm compared to      55—61
Frequency estimation, quotient-difference algorithm, error analysis, Stoica — Soderstrom algorithm compared to      70—73
Frequency estimation, quotient-difference algorithm, modified      29—30
Frequency estimation, quotient-difference algorithm, progressive      29
Frequency estimation, quotient-difference algorithm, simulated performance      30—51
Frequency estimation, quotient-difference algorithm, simulated performance, double sinusoid      42—46
Frequency estimation, quotient-difference algorithm, simulated performance, modified Todd — Cruz algorithm      35—41
Frequency estimation, quotient-difference algorithm, simulated performance, p = 3 case      47—51
Frequency estimation, quotient-difference algorithm, simulated performance, single sinusoids      31—34
Frequency estimation, quotient-difference algorithm, Stiefel theorems      20—28
Frequency estimation, quotient-difference algorithm, Todd — Cruz algorithm      18—20
Frequency estimation, quotient-difference algorithm, Todd — Cruz algorithm, modified      29—30
Frequency sampling filters, fixed point roundoff effects      211—259
Frequency sampling filters, fixed point roundoff effects, conclusions      256
Frequency sampling filters, fixed point roundoff effects, finite word length effects      221—255
Frequency sampling filters, fixed point roundoff effects, finite word length effects, frequency sampling filters, type 1      228—237
Frequency sampling filters, fixed point roundoff effects, finite word length effects, frequency sampling filters, type 2      243—249
Frequency sampling filters, fixed point roundoff effects, finite word length effects, linear phase frequency sampling filters type 1      238—243
Frequency sampling filters, fixed point roundoff effects, finite word length effects, linear phase frequency sampling filters type 2      250—255
Frequency sampling filters, fixed point roundoff effects, frequency sampling filters, type 1      213—216
Frequency sampling filters, fixed point roundoff effects, frequency sampling filters, type 1, real impulse responses      213—214
Frequency sampling filters, fixed point roundoff effects, frequency sampling filters, type 1, real impulse responses, linear phase      214—216
Frequency sampling filters, fixed point roundoff effects, frequency sampling filters, type 2      216—212
Frequency sampling filters, fixed point roundoff effects, frequency sampling filters, type 2, real impulse responses      217—220
Frequency sampling filters, fixed point roundoff effects, frequency sampling filters, type 2, real impulse responses, linear phase      218—220
Frequency sampling filters, fixed point roundoff effects, introduction      211—212
Frequency sampling filters, fixed point roundoff effects, system functions, finite length coefficients      220—221
Fresnel transforms, number theory      184—186
Grassberger — Procaccia algorithm      126—129
Hartley theoretic transform      178—179
IIR filters, roundoff noise      86—87
Karhunen — Loeve expansion, chaotic signal analysis      130—131
Kullback divergence, chaotic signal analysis      113—114 119—121
Levinson algorithm      12
MAP symbol detection      see "Blind adaptive MAP signal detection"
Maple Code, frequency estimation      75—77
MAPSD, algorithm, computer simulations      358—360 364
MAPSD, algorithm, decision feedback      374—376
MAPSD, algorithm, reduced complexity      365—382
MAPSD, algorithm, reduced complexity, LMS adaptation      366—372
MAPSD, algorithm, reduced complexity, LMS adaptation, fading channels      370—372
MAPSD, algorithm, time updates      398—400
MAPSD, filter bank, EKFs      390—391
MAPSD, optimal, known channels      347—349
MAPSD, suboptimal, decision feedback      372—380
Metric pruning, blind adaptive MAP symbol detection      380—382
Moving-average models, linear prediction methods      3 4
Neural networks, two-stage habituation based      301—337
Neural networks, two-stage habituation based, conclusions      330—331
Neural networks, two-stage habituation based, experimental results      317—330
Neural networks, two-stage habituation based, experimental results, Banzhaf sonograms      319—323
Neural networks, two-stage habituation based, experimental results, basic issues, spatio-temporal classification      317—319
Neural networks, two-stage habituation based, experimental results, classification, uncorrelated sequences      323—324
Neural networks, two-stage habituation based, experimental results, comparison, different training methods      325—328
Neural networks, two-stage habituation based, experimental results, hybrid habituated TDNN network      328
Neural networks, two-stage habituation based, experimental results, multiple habituation      328
Neural networks, two-stage habituation based, experimental results, principal component analysis      329
Neural networks, two-stage habituation based, experimental results, varying habituation parameters      329—330
Neural networks, two-stage habituation based, habituation based neural classifier      309—317
Neural networks, two-stage habituation based, habituation based neural classifier, general design structure      310—311
Neural networks, two-stage habituation based, habituation based neural classifier, other related structures      315—317
Neural networks, two-stage habituation based, habituation based neural classifier, theoretical properties      311—315
Neural networks, two-stage habituation based, introduction      301—303
Neural networks, two-stage habituation based, related biological mechanisms      303—309
Neural networks, two-stage habituation based, related biological mechanisms, classical conditioning      307—308
Neural networks, two-stage habituation based, related biological mechanisms, habituation      304—306
Neural networks, two-stage habituation based, related biological mechanisms, sensitization      307
Neural networks, two-stage habituation based, related biological mechanisms, temporal information encoding      308—309
Number theory, two-dimensional transforms      155—210
Number theory, two-dimensional transforms, classes, two-dimensional      170—173
Number theory, two-dimensional transforms, conclusions      204—205
Number theory, two-dimensional transforms, implementation, VLSI      190—204
Number theory, two-dimensional transforms, implementation, VLSI, Fermat ALU      195—203
Number theory, two-dimensional transforms, implementation, VLSI, Fermat ALU, CRT conversion      197—198
Number theory, two-dimensional transforms, implementation, VLSI, Fermat design      203—204
Number theory, two-dimensional transforms, implementation, VLSI, Fermat field column compression multiplier      190—195
Number theory, two-dimensional transforms, introduction      156—159
Number theory, two-dimensional transforms, mathematical preliminaries      159—163
Number theory, two-dimensional transforms, mathematical preliminaries, fields      160—161
Number theory, two-dimensional transforms, mathematical preliminaries, rings      160 162
Number theory, two-dimensional transforms, multiplexed processors      187—190
Number theory, two-dimensional transforms, multiplexed processors, two-dimensional factorization technique      187—188
Number theory, two-dimensional transforms, number theoretic transforms      167—173
Number theory, two-dimensional transforms, number theoretic transforms, classes      173—186
Number theory, two-dimensional transforms, number theoretic transforms, classes, implementation      178—186
Number theory, two-dimensional transforms, number theoretic transforms, classes, implementation, discrete cosine transforms over finite fields      181—184
Number theory, two-dimensional transforms, number theoretic transforms, classes, implementation, one-dimensional and two-dimensional Hartley number theoretic transform      178—180
Number theory, two-dimensional transforms, number theoretic transforms, classes, implementation, two-dimensional Fresnel transforms      184—186
Number theory, two-dimensional transforms, number theoretic transforms, classes, multi-dimensional mapping      173—178
Number theory, two-dimensional transforms, number theoretic transforms, one-dimensional      168—170
Number theory, two-dimensional transforms, number theoretic transforms, two-dimensional      170—173
Number theory, two-dimensional transforms, residue number systems      163—167
Number theory, two-dimensional transforms, residue number systems, Chinese remainder theorem      163—164
Number theory, two-dimensional transforms, residue number systems, modulus replication      165—167
Number theory, two-dimensional transforms, residue number systems, quadratic residue number system      165
Predictor filter, auto-regressive models      4—5
Prony method      5—6
Prony method, extended      5—9
Rossler system, chaotic signal analysis      113—114 119 133—134 146
Roundoff noise, floating point digital filters      79—103
Roundoff noise, floating point digital filters, basic error models      80—86
Roundoff noise, floating point digital filters, coefficient sensitivity      97—99
Roundoff noise, floating point digital filters, deterministic signals      91—92
Roundoff noise, floating point digital filters, direct form II filter      93—95
Roundoff noise, floating point digital filters, example      99—100
Roundoff noise, floating point digital filters, example, cascade structure      100
Roundoff noise, floating point digital filters, example, direct form II      100
Roundoff noise, floating point digital filters, FIR filters      86 92—93
Roundoff noise, floating point digital filters, high level error model      87—88
Roundoff noise, floating point digital filters, HR filters      86—87
Roundoff noise, floating point digital filters, inner product      86—87
Roundoff noise, floating point digital filters, inner product, signal flow graphs      96—97
Roundoff noise, floating point digital filters, introduction      79—80
Roundoff noise, floating point digital filters, state space filters      87
Roundoff noise, floating point digital filters, statistics of errors      89—90
Roundoff noise, floating point digital filters, summary      95—96
Roundoff noise, floating point digital filters, typical M matrices      90—91
Sensor array processing      259—300
Sensor array processing, cyclic cumulants      266—268
Sensor array processing, discussion      284—285
Sensor array processing, introduction      259—266
Sensor array processing, introduction, literature review      263—266
Sensor array processing, introduction, signal model      259—263
Sensor array processing, localization with nonstationary antennas      278—284
Sensor array processing, localization with nonstationary antennas, beamformer for coherent signals      281—282
Sensor array processing, localization with nonstationary antennas, direction finding using moving array      279—281
Sensor array processing, localization with nonstationary antennas, simulation examples      282—284
Sensor array processing, signal selective direction finding      268—278
Sensor array processing, signal selective direction finding, bandwidth independent localization algorithms      274—276
Sensor array processing, signal selective direction finding, CHOS ESPRIT for narrowband signals      272—274
Sensor array processing, signal selective direction finding, CHOS MUSIC for narrowband signals      269—272
Sensor array processing, signal selective direction finding, simulation examples      276—278
Shannon differential entropy function, chaotic signal analysis      120—121
Sinusoids      see "Frequency estimation"
State space filters, roundoff noise      87
Stiefel theorems, frequency estimation      20—28
Stoica — Soderstrom algorithm, frequency estimation      70—73
TDMA mobile radio, blind adaptive MAP symbol detection      see "Blind adaptive MAP symbol detection"
TDMA signal algorithm, dual-mode algorithm, blind adaptive MAP symbol detection      382—396
Todd — Cruz algorithm, frequency estimation      18—20 35—41
Transforms, number theory      see "Number theory two-dimensional
Viterbi algorithm, blind      358 360
White Gaussian noise, auto-regressive models      4—5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå