Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Averbach B., Chein O. — Problem solving through recreational mathematics
Averbach B., Chein O. — Problem solving through recreational mathematics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Problem solving through recreational mathematics

Àâòîðû: Averbach B., Chein O.

Àííîòàöèÿ:

Many of the most important mathematical concepts were developed from recreational problems. This book uses problems, puzzles, and games to teach students how to think critically. It emphasizes active participation in problem solving, with emphasis on logic, number and graph theory, games of strategy, and much more. Answers to Selected Problems. Index. 1980 ed.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1980

Êîëè÷åñòâî ñòðàíèö: 473

Äîáàâëåíà â êàòàëîã: 04.12.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Multigraph      176n.
Multiple      105
Multiplication principle      19—20 42 113 234 290—300 345 356
Necessary condition      45
Negation      41 42 48
Network      176 176n.
NIM      214—215 246—249 268
Nim, even and odd positions      248—249
Nim, Moore’s      255
Nim, Northcott’s      258
Nim, Wythoff’s      255
Node      17 176
Northcott’s Nim      258
Noughts and Crosses      see Tic Tac Toe
Odd vertex      see Vertex odd
Odds      341 338 361 362 372—373
Outcomes      338
Oware      312
Pacioli      337
Pairing      404
Pairing strategy      250—251 370
Pairwise disjoint      344
Parity      248 287
Parity, in Fifteen Puzzle      293—294 295—296 298
Parity, in Peg Solitaire      287
Parity, of a permutation      292
Pascal      337
Paterson, M. S.      265
Path      17 178
Path, dipath      191
Path, edge-disjoint      187—189
Path, Eulerian      178 179 181—182 185 186 187 190 191—192 202—205
Path, Hamiltonian      193 195 196
Pawn move      264
Peg Solitaire      274 285—288 308—310
Peg Solitaire, French version      309
Peg Solitaire, Hi Q      274 286—288 308—309
Pentominoes      281 308 415
Perfect information      216 218
Perfect numbers      100
permutations      290—296 298—299 346 345-348
Permutations, even      291 293
Permutations, odd      291 293
Phillips, H.      38
Pigeolet, M.      147
Place value      147
Planar graph      177
Planar map      198
Point of view      4
Poker      370
Polycube      308
Polyominoes      281—282 284 308 415
Position (of a game)      225 224—227 228 404
Position (of a game), drawing      225—227
Position (of a game), equivalence of      235 238
Position (of a game), equivalence of, examples of      236 237 238—240 413
Position (of a game), even and odd      see Nim
Position (of a game), initial      225 226—227
Position (of a game), losing      225—227 228
Position (of a game), penultimate      233
Position (of a game), starting      see Position initial
Position (of a game), terminal      225 226
Position (of a game), winning      225—227 228
Position (of a game), winning, examples of      229 230—232 241—245 246-249
positional notation      147—148 154 156—157
Potential payoff      361
Premise      55—56
Presenting a solution      11
Prime factorization      109—110 111
Prime number      100 106—111 137 332—333
Prime number, infinitude of      106—107
Prime number, relatively      116
probability      338 337—365
Probability, of an event      339
Problems, age      72 74—75 77—78 87-88
Problems, ancient      72 95—96
Problems, counting      366—370 373—375
Problems, crossing      175 196—197 208—209
Problems, cryptarithmetic      147 157—162 169—172
Problems, decanting      101 117—118
Problems, decimation      313—315
Problems, dissection      279—282 306—307
Problems, inference      2—3 26—35 38—39 61-69
Problems, logic      see Problems inference
Problems, matching      2—3 26—28 30 32—35 66-67
Problems, odds      341 372
Problems, shunting      3 22—25 35—36 316—317
Problems, tracing      174 202—205
Problems, truthful-liar      38—39 61—66
Problems, uniform motion      72 78—79 88—92
Problems, weighing      94—95 146 151—153 168 315-316
Problems, well-posed      12
Problems, work      72 81—84 92—93
Proof (nature of)      137 202
Proposition      see Statement
Propositional variable      41
Pythagoras      100
Pythagorean Theorem      279 280 306—307 414
Quadratic equations      324—325 329—330
Quadratic formula      83 324—325
Queen’s move      211 258
Quotient      120 160
Reentrant knight’s tour      194 312
Relatively prime numbers      116
Remainder      120 123—124 125 127 351—352
Remainder class      120—122
Repeated experiments      356—361
Repeated trials      356 371—372
retracing      189 204—205
Rook’s move      207 257
Roulette      340 360 362 363
Ruma      312
Shader, L.      373
Sheep and Wolves      see Fox and Hounds
Shunting Problems      see Problems shunting
Sieve of Eratosthenes      107—108
Silverman, D. L.      262
SIM      266 403 413
Simmons, G. J.      266
simplification      22 232—233
Simplification, examples of      22—25 241 246 289—291
Simultaneous equations      325—330
Sliding block puzzles      see Fifteen Puzzle
Slither      262—263 269
Solving problems, point of view      4
Solving problems, presenting solutions      11
Solving problems, simplification      22—25
Solving problems, techniques      11—12
Solving problems, visual aids      10
Soma      284—285
Sprague — Grundy method      229
Sprouts      265 413
State diagram      228—229 230
State of a game      224—225
Statement      39—40 49
Statement, compound      49
Strategy      21—22 215 221 225 228
Strategy, drawing      215 218 221 227
Strategy, drawing, examples of      407—408 408—409
Strategy, pairing      250—251 410
Strategy, winning      215 218 221 222 224 226—227 409
Strategy, winning, examples of      227—228 230—232 245 250—251 366 368—369 406 408—409 410 412
Strategy, winning, how to find      218—221 228—229 230 232-234
Subscripts, use of      80
Substitution, method of      77—78 325—326
Sufficient condition      45
Summation      350
Summers, G.      38
Syllogism      38 317—318 417 18
Symmetry      237—238 234—240 252
Symmetry, as a game strategy      250—251 406 408
Symmetry, as a limiting factor      234—236 238—240 243 246 406 408 411 417
Symmetry, central      235 408
Symmetry, diagonal      236
Symmetry, horizontal      235
Symmetry, vertical      235
Tac Tix      260 268
Tangrams      280—281 307—308
Tetrominoes      281 282 308
Theorem      137 202
Tic Tac Toe      224
Tic Tac Toe, symmetries of      234—236
Tic Tac Toe, three-dimensional      260—261 270—271
Tic Tac Toe, variations      214 238 258—261 270—271
Tower of Brahma      274 276—279 305
Tower of Hanoi      see Tower of Brahma
Traceable graph      178 (see also Path Eulerian)
Tree diagram      16—18 19—20 230
Tree diagram, examples of      17—18 20—22 42 112 218—222 355 357-359
Tricks      71 74 96—99 141—143 164—165 165—168 205 314
Tricks, card      96—99 141—142 314
Tricks, domino      205
Tricks, number guessing      71 74 96 142—143 164—165 165-168
Tricube      285 308
Trominoes      274 281 283—284
True odds      340
Truth table      42 43 44 45 54
Truth value      39—40
Truthful-liar problems      see Problems truthful-liar
Unfavorable game      363
Unfavorable outcomes      338
Uniform motion problems      see Problems uniform
Unique factorization theorem      109—110
Validity      56 55—57 59—60 418
Variables      72—73 80
Variables, propositional      41
Variations of a game      251—252
Vertex      176
Vertex, even      180 182 186 190
Vertex, odd      180 181 182 185 186 187
Vertex, of degree one      193
Vertex, of degree two      188 193 195
Vertices, set of, dominating      211 404
Vertices, set of, independent      212 404
visual aids      10
Weighing problems      see Problems weighing
Weight      339
Well-posed problem      12
Winning strategy      see Strategy winning
Work problems      see Problems work
Wylie, C. R.      38
Wythoff’s nim      255
“And”      see Conjunction
“Cubby Hole” Principle      402—403
“If and only if”      see Biconditional statement
“If, then”      see Conditional statement
“not”      see Negation
“Or”      see Disjunction
“Or”, exclusive sense      43
“Or”, inclusive sense      43
“Pigeon Hole” Principle      402—403
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå