| 
		        
			        |  |  
			        |  |  
					| Авторизация |  
					|  |  
			        |  |  
			        | Поиск по указателям |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Kollar J. — Rational curves on algebraic varieties |  
                    |  |  
			        |  |  
                    | Предметный указатель |  
                    | |  294 
  294 
  ,  160 
  3 
  ,  85 
 ![$*^{[-1]}(\ )$](/math_tex/0dcf0896ca8199dc8bccfca9ee10ada582.gif) 46 
  124 
  ,  17 
  ,  122 
  ,  119 
  ,  122 
  ,  51 74 
  ,  71 
  ,  71 
  56 58 
  -field      230 
  ,  23 28 
  78 
  11 
  ,  9 
  16 
  94 
  56 
  ,  ,  126 
  123 
  ,  122 
  173 
  ,  108 
  214 
  ,  186 
  ,  121 
  -negative extremal ray      127 
  210 
  122 
  240 
  -bundle      105 
  -Fano      240 
  ,  17 
  18 123 
  212 
  166 
  119 
  41 
  11 
  115 
  111 
  105 
  109 
  ,  126 
  ,  3 
  ,  ,  122 
  ,  123 Algebraic cycle      41
 Algebraic equivalence      122
 Algebraic realization      210
 Algebraic relation      210
 Ample (vector bundle)      116 265
 Anticanonical degree      119
 Attaching trees      155
 Auticanonical degree      119
 Auticanonical ring      173
 Bend-and-break      134
 Big      3
 Birational transform      3
 Canonical ring      173
 Cayley form      56
 CDiv( )      17
 ch( )      56
 Chain (of smooth rational curves)      155
 Chow field      56
 Chow field condition      70
 Chow form      56
 Chow functor      51 74
 Chow pull-back      50 51
 Chow( )      52
 Closed under
  192 Comb      156
 Cone of curves      126
 Cone of effective cycles      122
 Connected by a
  -chain      212 Connected by a
  -chain (of smooth rational curves)      212 Contractible      134
 Cycle theoretic fiber      45 46
 Cycle, defined over a subfield      42
 Cycle, theoretic fiber      45 46
 Cyclic cover      149
 Degree
  uniruling      181 Degree (of a cycle)      41
 Degree of a cycle      41
 Del Pezzo surface      171
 Del Pezzo, surface      171
 DVR      3
 Effective Cartier divisor      17
 Effective cycle      41
 Equivalence (algebraic, effective algebraic, effective rational, numerical, rational)      121—123
 Equivalence relation      210
 Equivalent (algebraically, rationally, numerically)      121—123
 Essentially independent (family of cycles)      45
 Essentially the same cycle      45
 Exceptional set      286
 Extremal ray      127
 Extremal subcone      127
 Fam( )      119 123
 Family of algebraic cycles      46
 Family of rational curves      108
 Family of rational curves through
  109 Fano variety      240
 Fano variety of lines      266
 Field condition      70
 Field of definition      19
 Finite type (property)      144
 Flat pull back      41
 Flat pull-back      41
 Flat section      135
 Free morphism      113
 Free over
  113 
 | Fundamental cycle      41 General deformation      115
 General point      3
 Generically unobstructed      33
 Geometrically irreducible      108
 Geometrically normal      79 108
 Geometrically rational      103 199
 Geometrically rational components      103
 Geometrically reduced      79 108
 Geometrically ruled      181
 Geometrically smooth      103
 Grassmann functor      11
 Group scheme      17
 Handle      156
 Hilb( ),
  10 74 Hilbert functor      9 74
 Hilbert polynomial      9
 Hom functor      16
 Hom( , )      16
 Hom( , , )      94
 Incidence correspondence      53
 Index (of a Fano variety)      245
 Inseparably unirational      206
 Inseparably uniruled      206
 Intersection number      294 295
 Irreducible algebraic relation      210
 Irreducible relation      210
 Line      248
 Locally unobstructed      33
 Locus      104 164
 Locus( )      104 164
 MAP      3
 Maximal rationally chain connected fibration      222
 Maximal rationally connected fibration      223
 Minimal (free morphism)      195
 Minimal free      195
 Mod
  -reduction      144 Morphism      3
 MRC-fibration      223
 MRCC-fibration      222
 Nearby smoothable      154
 Nef vector bundle      265
 nef,
  -nef      124 Nonnegative cycle      41
 Normal form      211
 Normal point      79
 Normic form      230
 Numerical equivalence      123
 Obs( )      29
 Obstruction      23 28
 Obstruction space      29
 Obtained from
  by attaching trees      155 Open algebraic relation      210
 Open relation      210
 Picard number      126
 Prerelation      212
 Prime divisor (of a field)      286
 Proalgebraic relation      210
 Product (of algebraic relations)      210
 Product (of relations)      209
 Proper algebraic relation      210
 Proper relation      210
 Push forward      41 81
 Quot scheme      77
 Quot( , ),
  77 rational      103 198
 Rational equivalence      122
 Rationally chain (of smooth rational curves) connected      199
 Rationally chain connected      199
 Rationally chain connected fibration      222
 Rationally connected      199
 RatLocus( )      104
 Reduced point      79
 Relation      209
 Relation class      210 212
 Relative Cartier divisor      17
 Represent (a functor)      8
 Root,
  root of  149 Ruled      181
 Ruled modification      289
 S*( )      10
 Semi normal      84
 Semi normalization      84
 Semi positive (vector bundle)      116
 Separably rationally connected      199
 Separably ruled      181
 Separably unirational      199
 Separably uniruled      181
 Seshadri constant      305
 Set theoretically equivalent      210
 Smooth point      79
 Smoothable      98 154
 Smoothable fixing
  154 Subcomb      156
 Supporting function      127
 Tooth      156
 TREE      155
 Two general points can be connected by a
  -chain      213 Unirational      199
 Uniruled      181
 Uniruled modification      289
 Uniruled with curves of
  -degree  183 Univ( ),
  10 52 Universal element      9
 Universal family      9
 Unobstructed      30
 Unsplit (family of morphisms or rational curves )      192
 Unsplit family of rational curves      192
 Very general point      3
 WDiv( )      123
 Weak normalization      84
 Weakly normal      84
 Weighted projective space      240
 Well defined family of algebraic cycles      46 47
 Well formed (weighted projective space)      240
 []      41
 
 | 
 |  |  |  | Реклама |  |  |  |  |  |