Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Tannehill J.C., Anderson D.A., Pletcher R.H. — Computational Fluid Mechanics and Heat Transfer
Tannehill J.C., Anderson D.A., Pletcher R.H. — Computational Fluid Mechanics and Heat Transfer



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Computational Fluid Mechanics and Heat Transfer

Àâòîðû: Tannehill J.C., Anderson D.A., Pletcher R.H.

Àííîòàöèÿ:

This comprehensive text provides basic fundamentals of computational theory and computational methods. The book is divided into two parts. The first part covers material fundamental to the understanding and application of finite-difference methods. The second part illustrates the use of such methods in solving different types of complex problems encountered in fluid mechanics and heat transfer. The book is replete with worked examples and problems provided at the end of each chapter.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2-å èçäàíèå

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 803

Äîáàâëåíà â êàòàëîã: 24.11.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Helmholtz equation      41
Hermite interpolation      686—688
Heuristic stability analysis      107 220—221
Homenergic      see "Isoenergetic"
Hopscotch method for heat equation      143
Hopscotch method for Navier — Stokes equations      632—633
Howarth flow      480
Hybrid scheme      458—459
Hydraulic diameter      498
Hyperbolic grid generation schemes      694—696
Ill-posed      28—29
Implicit scheme      54
Incompressible      251—252
Initial boundary value problem      see "Initial value problem"
Initial starting solution      19 445—446 461 550 609—610 615
Initial value problem      19 27
Integral methods      69—71 442
Internal energy      256
Internal flows      496—508
Inverse methods      478 482—489
Inviscid flow      235—245 259—327 321—332 351—437
Inviscid flow, compressible      321—332 351—431
Inviscid flow, incompressible      322—323 324—326 431—437
Irregular mesh      76—83
Irrotational      324—325
Isentropic flow      327—328
Isoenergetic      326
Iterative methods, block      160—165
Iterative methods, group      160
Iterative Methods, Point      153—160
Jacobi iteration      155
Jacobian      25—26 30 91 267 340 566—569 577 635—637 683
Jet flows      508—512
Johnson-King model      309
Jury problem      16
Keller box method for boundary-layer equations      462—465 477
Keller box method for heat equation      134—137
Keller box method, modified box method      136—137
Kelvin's theorem      425
Kentzer's method      408
Kinematic displacement thickness      304
Kinematic viscosity      290
Kinetic energy of turbulence      see "Turbulence kinetic energy"
Kinetic theory approach      250
Korteweg — de Vries equation      41
Krause zig-zag scheme      523—525
Kronecker delta      253
Kutta condition      429 437
L-equation model      309
Laasonen method      see "Simple implicit method"
Lagrange acceleration formula      325
Lagrange interpolation      684—685
Lagrangian approach      251
Laminar flow      272
Laplace's equation      11 16—19 32—34 144—148 326 431—437 688—694
Large eddy simulation (LES)      273 300 320—321
LAURA code      642
Law of mass action      261
Law-of-the-wall region      302—303
Lax equivalence theorem      56—57
Lax method for inviscid Burgers' equation      181—183
Lax method for wave equation      88—89 94—96 112—113
Lax — Wendroff method for inviscid Burgers' equation      184—187
Lax — Wendroff method for Navier — Stokes equations      632—633
Lax — Wendroff method for viscous Burgers' equation      227
Lax — Wendroff method for wave equation      99 117—118
Leapfrog method, for wave equation      116
Leapfrog/DuFort Frankel method for Burgers' equation      225
Leapfrog/DuFort Frankel method for Navier — Stokes equations      633 663
Left eigenvector      see "Eigenvector"
Leonard method      224
Leonard stress      284
LGS methods      641
Liebmann iteration      see "Gauss — Seidel iteration"
limiters      13 186 208 214—216 398
Linearization by extrapolation      455
Linearization, iterative update      450
Linearization, lagging      449—450
Linearization, Newton's method      450—452
Linearization, Newton's method, with coupling      452—454
Linearized block implicit (LBI) scheme      574
Local time stepping      627
Low Reynolds number turbulence model      315—316
Lower-upper symmetric Gauss — Seidel (LU-SGS) method      641 663
MAC method      668—670
MacCormack method, implicit/explicit      574 640
MacCormack method, original explicit      119
MacCormack method, original explicit for Euler equations      273—274
MacCormack method, original explicit for inviscid Burgers' equation      187—188
MacCormack method, original explicit for Navier — Stokes equations      625—628
MacCormack method, original explicit for PNS equations      574
MacCormack method, original explicit for viscous Burgers' equation      227—228
MacCormack method, original explicit for wave equation      119
MacCormack method, over-relaxed      228—229
MacCormack method, rapid solver      631—632
MacCormack method, time-split      166—167 230—231
MacCormack method, time-split for Navier — Stokes equations      628—631
MacCormack method, time-split for viscous Burgers' equation      230—231
MacCormack method, upwind      641
Mach number      6—7 266
Mapping      see "Transformation"
Marching problem      19—22 45
Marker-and-cell (MAC) method      668—670
Mass-weighted averaging procedure      273 275
Matrix stability analysis      91—96
Matrix, aperiodic      94—95 717
Matrix, banded      138
Matrix, block bidiagonal      see "Block bidiagonal systems"
Matrix, block tridiagonal      see "Block tridiagonal systems"
Merged layer region      538
Mesh Peclet number      see "Mesh Reynolds number"
Mesh Reynolds number      220—221 457
Method of characteristics (MOC)      352—364
Method of characteristics (MOC) for linear PDE's      353—361
Method of characteristics (MOC) for nonlinear PDE's      361—364
Metrics      267—270 516 519 576—577 682—683
Minmod limiter      209
Mixed problem      see "Robin's problem"
Mixing length      301—317 320—321
Model equations      101
Modified box method for boundary-layer equations      462—465
Modified box method for heat equation      136—137
Modified equation      104—107 110—111
Modified strongly implicit (MSI) procedure      165 725—730
Modified Thomas algorithm      454 487
Momentum equation      252—255
Momentum equation, inviscid form      323—326
Momentum equation, Reynolds form      276—278
Momentum thickness      303
Monotone scheme      183—184
Multigrid method      13 165—176 627 652
MUSCL approach      204—209 217 395—396 400
Navier — Stokes equations      253—255 263—266 340—341 347 621—677
Navier — Stokes equations in general coordinates      340—341 552—554
Navier — Stokes equations, compressible      253—255 263—266 340—341 621—649
Navier — Stokes equations, incompressible      255 649—677
Navier — Stokes equations, integral form      347
Navier — Stokes equations, low speed      642—649
Navier — Stokes equations, nondimensional form      264—266
Navier — Stokes equations, thin-layer approximation      541—545 624
Navier — Stokes equations, vector form      263—264 622—623
Neumann problem      34
Newton linearization      450—453
Newton — Raphson method      450—452 483 563
Newton's method      see "Newton — Raphson method"
Newtonian flow      6
Newtonian fluid      252—253
Nine-point formula      145
Nodal-point scheme      343
Nonconservative form      58
Nondimensional form of equations      264—266
Normal pressure gradient      541—542
Numerical dissipation      622 see
Odd-even reduction      153
One and one-half equation turbulence model      313
One-equation turbulence model      310—313
One-half equation turbulence model      308—309
Operators      see "Difference operators"
Order of accuracy notation (O)      47 54
Order of magnitude analysis      287—294
Orthogonal curvilinear coordinates      266—271
Orthogonality      691—694
Osher's scheme      see "Enquist — Osher scheme"
Over-relaxation      156
Panel methods      431—437
Parabolic Navier — Stokes equations      550
Parabolic procedures, 3-D confined flows      585—592
Parabolic procedures, 3-D free-shear flows      592—593
Parabolized Navier — Stokes equations      13 541 545—562
Parabolized Navier — Stokes equations, applications      582—584
Parabolized Navier — Stokes equations, derivation      546—565
Parabolized Navier — Stokes equations, numerical solution      562—582
Parabolized Navier — Stokes equations, thin-layer approximation      554—555
Partial Differential Equations, Canonical Forms      25—33
Partial differential equations, elliptic      16 25 32—33
Partial differential equations, general, second order      22
Partial differential equations, hyperbolic      19 25 26—29
Partial differential equations, parabolic      19 25 29—32
Partial differential equations, quasi-linear      22
Partial differential equations, systems of      35—39
Partially parabolized Navier — Stokes (PPNS) equations      541 584—609
Particle-in-cell (PIC) method      12
Peclet number      220 287 see
Perfect gas      258
Periodic boundary conditions      94 109
Perturbation      330 353
Phase angle      88 107—111
Phase angle, exact      108
Phase angle, lagging      109
Phase angle, leading      109
Phase angle, relative      109
Phenomenological approach      250
Physical domain      679
PIC method      12
PISO method      676—677
Pivoting      149
PNS equations      see "Parabolized Navier — Stokes equations"
Poisson equation      40 145 651 689
Poisson equation for pressure      589 600 652—653 657 668 671—673
Polynomial fitting      65—69
Potential equation, methods for      413—427
PPNS equations      see "Partially parabolized Navier — Stokes equations"
Prandtl mixing-length formula      301
Prandtl number      259 287
Prandtl — Glauert equation      331 353—361 429
Preconditioning      13 402 647—649 661 665
Predictor-corrector, multiple iteration method, for PNS equations      563
Predictor-corrector, multiple iteration method, for viscous Burgers' equation      232—233
Pressure based schemes      667
Pressure correction approach      588 661 667—677
Pressure update      590—591
Pressure, gauge      648
Pressure-implicit with splitting of operators (PISO) method      676—677
Primitive variables      650 667
Primitive-variable approach      659—677
Primitive-variable form      650
Projection methods      670—671
Property U      198—199
Pseudo time      646—649 652 665
Pseudo-compressibility method      661—665
Pseudo-transient representation      652
PUMPIN scheme      590—592
Quasi-linear      see "Partial-differential equations quasi-linear"
Quasilinearization      see "Linearization" "Newton's
Rankine — Hugoniot equations      332 413
Rayleigh problem      30—32
Rayleigh's pitot formula      7—8
Red-black scheme      160—161
Reduced Navier — Stokes (RNS) equations      541 562 605
Reflection method      407
Relaxation method      11
Residual form      146
Retarded density      419
Reynolds analogy      304
Reynolds averaging      273—274
Reynolds equations      273—285 624
Reynolds number      220 264 287
Reynolds stress      281 443 514
Reynolds stress models      300 317—320
Reynolds stress models, algebraic      318—320
Richardson extrapolation      158 466
Richardsons's method      129
Riemann invariants      358
Riemann problem      12 177—180 197—199 388
Robin's problem      34
Roe average      391—393 400
Roe — Sweby scheme      216
Roe's scheme for Euler equations      388—398
Roe's scheme for inviscid Burgers' equation      198—201
Roe's scheme for Navier — Stokes equations      642
Roe's scheme for PNS equations      574—582
Roe's scheme for viscous Burgers' equation      233—234
Roe-averaged state      393
Rotated difference scheme      417 399
Round-off error      54—55 84
Runge — Kutta methods for Euler equations      401
Runge — Kutta methods for Navier — Stokes equations      632—633 663
Runge — Kutta methods for wave equation      124—125
Rusanov method for inviscid Burgers' equation      188—189
Rusanov method for wave equation      122—123
SCM method      438—439
Segregated approach      588
Semi-inverse procedure      492
Separated flows      478—496 505—508 610
Separation of variables      16 20
Series expansion technique      546—551
Shift condition      106
Shock capturing      12 365—402
Shock fitting      12 365 371—373 411—413
Shock layer      6 540
Shock-capturing methods      365—402
Shockwave      6 12 411—413
Shockwave, bow      6 7
Shockwave, governing equations      331—332 411—413
Shockwave, normal      331—332
Shockwave, oblique      332 411—413
Similarity solution      31—32
Simple explicit method for boundary-layer equations      445—447
Simple explicit method for heat equation      53—54 83—87 93—95 126—129 137
Simple explicit method for PNS equations      563
Simple or fully implicit method for boundary-layer equations      447—459 477
Simple or fully implicit method for heat equation      63 130 150—151
SIMPLE procedure for incompressible N-S equations      671—676
SIMPLE procedure for PPNS equations      588—590 592
SIMPLEC method      673
SIMPLER procedure for incompressible N-S equations      673—674
SIMPLER procedure for PPNS equations      590
Slender channel approximation      508
Smagorinsky model      320—321
Small disturbance approximation      490—491
Small-perturbation theory      330—331 353
Smoothing      see also "Artifical viscosity explicit"
Smoothing, explicit      121 191 573 630 639—540
Smoothing, implicit      639—640
SOR      see "Successive over-relaxation"
SOR by lines      160—162
Source distribution      433
Space marching methods for Euler equations      365—370
Space marching methods for Navier — Stokes equations      665—667
Spalart — Allmaras model      312—313
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå