Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: A Multi-Length-Scale Theory of the Anomalous Mixing-Length Growth for Tracer Flow in Heterogeneous Porous Media
Автор: Zhang Q.
Аннотация:
Journal of Statistical Physics, Vol. 66, Nos. 1/2, 1992. p. 485-501.
We develop a multi-length-scale (multifractal) theory for the effect of rock heterogeneity on the growth of the mixing layer of the flow of a passive tracer through porous media. The multifractal exponent of the size of the mixing layer is determined analytically from the statistical properties of a random velocity (permeability) field. The anomalous diffusion of the mixing layer can occur both on finite and on asymptotic length scales.